Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Physiol ; 192(2): 1254-1267, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36806945

RESUMEN

Many disease resistance genes in wheat (Triticum aestivum L.) confer strong resistance to specific pathogen races or strains, and only a small number of genes confer multipathogen resistance. The Leaf rust resistance 67 (Lr67) gene fits into the latter category as it confers partial resistance to multiple biotrophic fungal pathogens in wheat and encodes a Sugar Transport Protein 13 (STP13) family hexose-proton symporter variant. Two mutations (G144R, V387L) in the resistant variant, Lr67res, differentiate it from the susceptible Lr67sus variant. The molecular function of the Lr67res protein is not understood, and this study aimed to broaden our knowledge on this topic. Biophysical analysis of the wheat Lr67sus and Lr67res protein variants was performed using Xenopus laevis oocytes as a heterologous expression system. Oocytes injected with Lr67sus displayed properties typically associated with proton-coupled sugar transport proteins-glucose-dependent inward currents, a Km of 110 ± 10 µM glucose, and a substrate selectivity permitting the transport of pentoses and hexoses. By contrast, Lr67res induced much larger sugar-independent inward currents in oocytes, implicating an alternative function. Since Lr67res is a mutated hexose-proton symporter, the possibility of protons underlying these currents was investigated but rejected. Instead, currents in Lr67res oocytes appeared to be dominated by anions. This conclusion was supported by electrophysiology and 36Cl- uptake studies and the similarities with oocytes expressing the known chloride channel from Torpedo marmorata, TmClC-0. This study provides insights into the function of an important disease resistance gene in wheat, which can be used to determine how this gene variant underpins disease resistance in planta.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Triticum/metabolismo , Cloro/metabolismo , Radioisótopos/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Protones , Oocitos/metabolismo , Hexosas/metabolismo , Glucosa , Azúcares , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
J Exp Bot ; 75(13): 3877-3890, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618744

RESUMEN

Partial resistance to multiple biotrophic fungal pathogens in wheat (Triticum aestivum L.) is conferred by a variant of the Lr67 gene, which encodes a hexose-proton symporter. Two mutations (G144R and V387L) differentiate the resistant and susceptible protein variants (Lr67res and Lr67sus). Lr67res lacks sugar transport capability and was associated with anion transporter-like properties when expressed in Xenopus laevis oocytes. Here, we extended this functional characterization to include yeast and in planta studies. The Lr67res allele, but not Lr67sus, induced sensitivity to ions in yeast (including NaCl, LiCl, and KI), which is consistent with our previous observations that Lr67res expression in oocytes induces novel ion fluxes. We demonstrate that another naturally occurring single amino acid variant in wheat, containing only the Lr67G144R mutation, confers rust resistance. Transgenic barley plants expressing the orthologous HvSTP13 gene carrying the G144R and V387L mutations were also more resistant to Puccinia hordei infection. NaCl treatment of pot-grown adult wheat plants with the Lr67res allele induced leaf tip necrosis and partial leaf rust resistance. An Lr67res-like function can be introduced into orthologous plant hexose transporters via single amino acid mutation, highlighting the strong possibility of generating disease resistance in other crops, especially with gene editing.


Asunto(s)
Resistencia a la Enfermedad , Hordeum , Enfermedades de las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Hordeum/genética , Hordeum/microbiología , Basidiomycota/fisiología , Polimorfismo Genético , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Plantas Modificadas Genéticamente/genética
3.
Theor Appl Genet ; 135(8): 2627-2639, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35748907

RESUMEN

KEY MESSAGE: Stem rust resistance genes, SrRL5271 and Sr672.1 as well as SrCPI110651, from Aegilops tauschii, the diploid D genome progenitor of wheat, are sequence variants of Sr46 differing by 1-2 nucleotides leading to non-synonymous amino acid substitutions. The Aegilops tauschii (wheat D-genome progenitor) accessions RL 5271 and CPI110672 were identified as resistant to multiple races (including the Ug99) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici (Pgt). This study was conducted to identify the stem rust resistance (Sr) gene(s) in both accessions. Genetic analysis of the resistance in RL 5271 identified a single dominant allele (SrRL5271) controlling resistance, whereas resistance segregated at two loci (SR672.1 and SR672.2) for a cross of CPI110672. Bulked segregant analysis placed SrRL5271 and Sr672.1 in a region on chromosome arm 2DS that encodes Sr46. Molecular marker screening, mapping and genomic sequence analysis demonstrated SrRL5271 and Sr672.1 are alleles of Sr46. The amino acid sequence of SrRL5271 and Sr672.1 is identical but differs from Sr46 (hereafter referred to as Sr46_h1 by following the gene nomenclature in wheat) by a single amino acid (N763K) and is thus designated Sr46_h2. Screening of a panel of Ae. tauschii accessions identified an additional allelic variant that differed from Sr46_h2 by a different amino acid (A648V) and was designated Sr46_h3. By contrast, the protein encoded by the susceptible allele of Ae. tauschii accession AL8/78 differed from these resistance proteins by 54 amino acid substitutions (94% nucleotide sequence gene identity). Cloning and complementation tests of the three resistance haplotypes confirmed their resistance to Pgt race 98-1,2,3,5,6 and partial resistance to Pgt race TTRTF in bread wheat. The three Sr46 haplotypes, with no virulent races detected yet, represent a valuable source for improving stem resistance in wheat.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas , Diploidia , Resistencia a la Enfermedad/genética , Genes de Plantas , Haplotipos , Enfermedades de las Plantas/genética , Puccinia
4.
Plant Biotechnol J ; 19(6): 1206-1215, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33415836

RESUMEN

Leaf rust, caused by Puccinia hordei, is a devastating fungal disease affecting barley (Hordeum vulgare subsp. vulgare) production globally. Despite the effectiveness of genetic resistance, the deployment of single genes often compromises durability due to the emergence of virulent P. hordei races, prompting the search for new sources of resistance. Here we report on the cloning of Rph15, a resistance gene derived from barley's wild progenitor H. vulgare subsp. spontaneum. We demonstrate using introgression mapping, mutation and complementation that the Rph15 gene from the near-isogenic line (NIL) Bowman + Rph15 (referred to as BW719) encodes a coiled-coil nucleotide-binding leucine-rich repeat (NLR) protein with an integrated Zinc finger BED (ZF-BED) domain. A predicted KASP marker was developed and validated across a collection of Australian cultivars and a series of introgression lines in the Bowman background known to carry the Rph15 resistance. Rph16 from HS-680, another wild barley derived leaf rust resistance gene, was previously mapped to the same genomic region on chromosome 2H and was assumed to be allelic with Rph15 based on genetic studies. Both sequence analysis, race specificity and the identification of a knockout mutant in the HS-680 background suggest that Rph15- and Rph16-mediated resistances are in fact the same and not allelic as previously thought. The cloning of Rph15 now permits efficient gene deployment and the production of resistance gene cassettes for sustained leaf rust control.


Asunto(s)
Basidiomycota , Hordeum , Australia , Basidiomycota/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética
5.
Plant Biotechnol J ; 19(2): 273-284, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32744350

RESUMEN

In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Hordeum , Enfermedades de las Plantas/genética , Hordeum/genética , Enfermedades de las Plantas/microbiología
6.
Mol Plant Microbe Interact ; 33(11): 1286-1298, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32779520

RESUMEN

In the last 20 years, severe wheat stem rust outbreaks have been recorded in Africa, Europe, and Central Asia. This previously well controlled disease, caused by the fungus Puccinia graminis f. sp. tritici, has reemerged as a major threat to wheat cultivation. The stem rust (Sr) resistance gene Sr22 encodes a nucleotide-binding and leucine-rich repeat receptor which confers resistance to the highly virulent African stem rust isolate Ug99. Here, we show that the Sr22 gene is conserved among grasses in the Triticeae and Poeae lineages. Triticeae species contain syntenic loci with single-copy orthologs of Sr22 on chromosome 7, except Hordeum vulgare, which has experienced major expansions and rearrangements at the locus. We also describe 14 Sr22 sequence variants obtained from both Triticum boeoticum and the domesticated form of this species, T. monococcum, which have been postulated to encode both functional and nonfunctional Sr22 alleles. The nucleotide sequence analysis of these alleles identified historical sequence exchange resulting from recombination or gene conversion, including breakpoints within codons, which expanded the coding potential at these positions by introduction of nonsynonymous substitutions. Three Sr22 alleles were transformed into wheat cultivar Fielder and two postulated resistant alleles from Schomburgk (hexaploid wheat introgressed with T. boeoticum segment carrying Sr22) and T. monococcum accession PI190945, respectively, conferred resistance to P. graminis f. sp. tritici race TTKSK, thereby unequivocally confirming Sr22 effectiveness against Ug99. The third allele from accession PI573523, previously believed to confer susceptibility, was confirmed as nonfunctional against Australian P. graminis f. sp. tritici race 98-1,2,3,5,6.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Poaceae/genética , Australia , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Evolución Molecular , Variación Genética , Genómica , Enfermedades de las Plantas/microbiología , Poaceae/microbiología
7.
Plant Physiol ; 179(4): 1285-1297, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30305371

RESUMEN

Fungal pathogens are a major constraint to global crop production; hence, plant genes encoding pathogen resistance are important tools for combating disease. A few resistance genes identified to date provide partial, durable resistance to multiple pathogens and the wheat (Triticum aestivum) Lr67 hexose transporter variant (Lr67res) fits into this category. Two amino acids differ between the wild-type and resistant alleles - G144R and V387L. Exome sequence data from 267 barley (Hordeum vulgare) landraces and wild accessions was screened and neither of the Lr67res mutations was detected. The barley ortholog of Lr67, HvSTP13, was functionally characterized in yeast as a high affinity hexose transporter. The G144R mutation was introduced into HvSTP13 and abolished Glc uptake, whereas the V387L mutation reduced Glc uptake by ∼ 50%. Glc transport by HvSTP13 heterologously expressed in yeast was reduced when coexpressed with Lr67res Stable transgenic Lr67res barley lines exhibited seedling resistance to the barley-specific pathogens Puccinia hordei and Blumeria graminis f. sp. hordei, which cause leaf rust and powdery mildew, respectively. Barley plants expressing Lr67res exhibited early senescence and higher pathogenesis-related (PR) gene expression. Unlike previous observations implicating flavonoids in the resistance of transgenic sorghum (Sorghum bicolor) expressing Lr34res, another wheat multipathogen resistance gene, barley flavonoids are unlikely to have a role in Lr67res-mediated resistance. Similar to observations made in yeast, Lr67res reduced Glc uptake in planta These results confirm that the pathway by which Lr67res confers resistance to fungal pathogens is conserved between wheat and barley.


Asunto(s)
Hordeum/inmunología , Proteínas de Transporte de Monosacáridos/fisiología , Triticum/genética , Flavonoides/metabolismo , Expresión Génica , Hordeum/genética , Hordeum/metabolismo , Mutación , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(36): 10204-9, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27555587

RESUMEN

Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.


Asunto(s)
Resistencia a la Enfermedad/genética , Grano Comestible/inmunología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/inmunología , Tallos de la Planta/inmunología , Triticum/inmunología , Secuencia de Aminoácidos , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/microbiología , Citosol/inmunología , Citosol/metabolismo , Citosol/microbiología , Grano Comestible/genética , Grano Comestible/microbiología , Células Vegetales/inmunología , Células Vegetales/metabolismo , Células Vegetales/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Tallos de la Planta/genética , Tallos de la Planta/microbiología , Plantas Modificadas Genéticamente , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Triticum/genética , Triticum/microbiología
9.
Theor Appl Genet ; 131(1): 127-144, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28980023

RESUMEN

KEY MESSAGE: Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Australia , Basidiomycota , Genes de Plantas , Estudios de Asociación Genética , Variación Genética , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/microbiología
10.
Plant Biotechnol J ; 14(5): 1261-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26471973

RESUMEN

The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Triticum/genética , Alelos , Cruzamiento , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/inmunología , Triticum/inmunología
11.
Theor Appl Genet ; 128(3): 431-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25523501

RESUMEN

KEY MESSAGE: Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Poaceae/genética , Basidiomycota , Cruzamiento , Cromosomas de las Plantas , Ligamiento Genético , Marcadores Genéticos , Repeticiones de Microsatélite , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Selección Genética , Lugares Marcados de Secuencia
12.
Theor Appl Genet ; 128(3): 549-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25613742

RESUMEN

KEY MESSAGE: Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Cruzamiento , Mapeo Cromosómico , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Triticum/clasificación , Triticum/microbiología
13.
Phytopathology ; 105(7): 872-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26120730

RESUMEN

Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.


Asunto(s)
Basidiomycota/genética , Interacciones Huésped-Patógeno , Inmunidad de la Planta/genética , Triticum/microbiología , Basidiomycota/patogenicidad , Evolución Biológica , Abastecimiento de Alimentos , Genes de Plantas , Enfermedades de las Plantas , Triticum/genética
15.
Theor Appl Genet ; 127(4): 781-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24408377

RESUMEN

KEY MESSAGE: We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Triticum/genética , Triticum/microbiología , Ascomicetos/fisiología , Basidiomycota/fisiología , Cruzamientos Genéticos , Marcadores Genéticos , Homocigoto , Endogamia , Noruega , Fenotipo , Plantones/genética , Plantones/microbiología , Triticum/inmunología
16.
Plant Biotechnol J ; 11(7): 847-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23711079

RESUMEN

The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad-spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad-spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34-conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Triticum/genética , Técnicas de Transferencia de Gen , Genes de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Fenotipo , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología
17.
Theor Appl Genet ; 126(3): 663-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23117720

RESUMEN

Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Enfermedades de las Plantas/genética , Sorghum/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Cromosomas de las Plantas/genética , Evolución Molecular , Exones , Hongos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Haplotipos , Datos de Secuencia Molecular , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Sorghum/inmunología , Triticum/inmunología
18.
Plant J ; 65(3): 392-403, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21265893

RESUMEN

The Triticum aestivum (bread wheat) disease resistance gene Lr34 confers durable, race non-specific protection against three fungal pathogens, and has been a highly relevant gene for wheat breeding since the green revolution. Lr34, located on chromosome 7D, encodes an ATP-binding cassette (ABC) transporter. Both wheat cultivars with and without Lr34-based resistance encode a putatively functional protein that differ by only two amino acid polymorphisms. In this study, we focused on the identification and characterization of homoeologous and orthologous Lr34 genes in hexaploid wheat and other grasses. In hexaploid wheat we found an expressed and putatively functional Lr34 homoeolog located on chromosome 4A, designated Lr34-B. Another homoeologous Lr34 copy, located on chromosome 7A, was disrupted by the insertion of repetitive elements. Protein sequences of LR34-B and LR34 were 97% identical. Orthologous Lr34 genes were detected in the genomes of Oryza sativa (rice) and Sorghum bicolor (sorghum). Zea mays (maize), Brachypodium distachyon and Hordeum vulgare (barley) lacked Lr34 orthologs, indicating independent deletion of this particular ABC transporter. Lr34 was part of a gene-rich island on the wheat D genome. We found gene colinearity on the homoeologous A and B genomes of hexaploid wheat, but little microcolinearity in other grasses. The homoeologous LR34-B protein and the orthologs from rice and sorghum have the susceptible haplotype for the two critical polymorphisms distinguishing the LR34 proteins from susceptible and resistant wheat cultivars. We conclude that the particular Lr34-haplotype found in resistant wheat cultivars is unique. It probably resulted from functional gene diversification that occurred after the polyploidization event that was at the origin of cultivated bread wheat.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , ADN de Plantas/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Cromosomas de las Plantas , Genes de Plantas , Genoma de Planta , Haplotipos , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/fisiología , Poliploidía , Sitios de Carácter Cuantitativo , Triticum/fisiología
19.
Plant Biotechnol J ; 10(4): 477-87, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22321563

RESUMEN

Breeding for durable disease resistance is challenging, yet essential to improve crops for sustainable agriculture. The wheat Lr34 gene is one of the few cloned, durable resistance genes in plants. It encodes an ATP binding cassette transporter and has been a source of resistance against biotrophic pathogens, such as leaf rust (Puccinina triticina), for over 100 years. As endogenous Lr34 confers quantitative resistance, we wanted to determine the effects of transgenic Lr34 with specific reference to how expression levels affect resistance. Transgenic Lr34 wheat lines were made in two different, susceptible genetic backgrounds. We found that the introduction of the Lr34 resistance allele was sufficient to provide comparable levels of leaf rust resistance as the endogenous Lr34 gene. As with the endogenous gene, we observed resistance in seedlings after cold treatment and in flag leaves of adult plants, as well as Lr34-associated leaf tip necrosis. The transgene-based Lr34 resistance did not involve a hypersensitive response, altered callose deposition or up-regulation of PR genes. Higher expression levels compared to endogenous Lr34 were observed in the transgenic lines both at seedling as well as adult stage and some improvement of resistance was seen in the flag leaf. Interestingly, in one genetic background the transgenic Lr34-based resistance resulted in improved seedling resistance without cold treatment. These data indicate that functional variability in Lr34-based resistance can be created using a transgenic approach.


Asunto(s)
Genes de Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiología , Basidiomycota/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/microbiología , Triticum/inmunología
20.
Theor Appl Genet ; 124(8): 1475-86, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22297565

RESUMEN

The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F(6) RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F(4)-derived F(5) RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.


Asunto(s)
Marcadores Genéticos , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Eliminación de Gen , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos/genética , Haplotipos , Homocigoto , Modelos Genéticos , Modelos Estadísticos , Mutación , Necrosis , Fenotipo , Enfermedades de las Plantas/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA