Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(10): e2302907, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899301

RESUMEN

Exposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH2 ) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R-complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS-NH2 particles, including a decreased neuronal differentiation and an increased Amyloid ß (Aß) secretion, a sensitive readout correlating with Alzheimer's disease pathology. In parallel, only in vivo treatments with PS-NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aß compared to wild-type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.


Asunto(s)
Nanopartículas , Poliestirenos , Animales , Humanos , Poliestirenos/toxicidad , Péptidos beta-Amiloides/toxicidad , Caenorhabditis elegans , Microplásticos/farmacología , Nanopartículas/toxicidad , Nanopartículas/química , Mamíferos
2.
Chemistry ; 30(4): e202302484, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37870209

RESUMEN

Cobaltabis(dicarbollides), ferrabis(dicarbollide), and their halogenated derivatives are the most studied metallacarboranes with great medical potential. These versatile compounds and their iodinated derivatives can be used in chemotherapy, radiotherapy, particle therapy, and bioimaging when isotopes are used. These metallacarboranes have been evaluated in vitro and recently in vivo with complex animal models. Lately, these studies have been complemented using the invertebrate Caenorhabditis elegans (C. elegans), a nematode largely used in toxicology. When evaluated at the L4 stage, cobaltabis(dicarbollides), ([o-COSAN]- and [8,8'-I2 -o-COSAN]- ), exhibited a higher mean lethal dose (LD50 ) than ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2 -o-FESAN]- ). In this work, we used the C. elegans embryos since they are a complex biological barrier with concentric layers of polysaccharides and proteins that protect them from the environment. We assessed if the metal atom changes their biointeraction with the C. elegans embryos. First, we assessed the effects on embryo development for metallacarboranes and their di-iodinated derivatives. We observed changes in color and in their surface structure. An exhaustive physicochemical characterization was performed to understand better this interaction, revealing a stronger interaction of ferrabis(dicarbollide) compounds with C. elegans embryos than the cobaltabis(dicarbollide) molecules. Unveiling the biological interaction of these compounds is of great interest for their future biomedical applications.


Asunto(s)
Aniones , Caenorhabditis elegans , Compuestos Organometálicos , Animales , Metales , Compuestos Organometálicos/química , Cobalto/química
3.
Small ; 19(32): e2207806, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060223

RESUMEN

Ratiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd-ONPs show a great temperature sensitivity (3.4% K-1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd-ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd-ONPs are able to sense temperature changes at the nano-microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd-ONPs can locally monitor internal body temperature changes with spatio-temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.


Asunto(s)
Nanopartículas , Termometría , Animales , Caenorhabditis elegans , Temperatura
4.
New Phytol ; 234(4): 1411-1429, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152435

RESUMEN

Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Amidas/metabolismo , Ácidos Cumáricos/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Tiramina/metabolismo , Virulencia
5.
Small ; 17(10): e2003937, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33586332

RESUMEN

Limbal stem cells (LSCs) are already used in cell-based treatments for ocular surface disorders. Clinical translation of LSCs-based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation. Bacterial nanocellulose (BNC) is an appealing, yet unexplored, candidate for this application because of its biocompatibility, animal-free origin and mechanical stability. Here, BNC as a vehicle for human embryonic stem cells-derived LSC (hESC-LSC) are investigated. To enhance cell-biomaterial interactions, a plasma activation followed by a Collagen IV and Laminin coating of the BNC substrates is implemented. This surface functionalization with human extracellular matrix proteins greatly improved the attachment and survival of hESC-LSC without compromising the flexible, robust and semi-transparent nature of the BNC. The surface characteristics of the BNC substrates are described and a preliminary ex vivo test in simulated transplantation scenarios is provided. Importantly, it is shown that hESC-LSC retain their self-renewal and stemness characteristics up to 21 days on BNC substrates. These results open the door for future research on hESC-LSC/BNC constructs to treat severe ocular surface pathologies.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Humanos , Regeneración , Trasplante de Células Madre
6.
Soft Matter ; 14(19): 3955-3962, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29736513

RESUMEN

Bacteria can produce cellulose, one of the most abundant biopolymer on earth, and emerge as an interesting candidate to fabricate advanced materials. Cellulose produced by Komagataeibacter Xylinus, a bacterial strain, is a pure water insoluble biopolymer, without hemicellulose or lignin. Bacterial cellulose (BC) exhibits a nanofibrous porous network microstructure with high strength, low density and high biocompatibility and it has been proposed as cell scaffold and wound healing material. The formation of three dimensional (3D) cellulose self-standing structures is not simple. It either involves complex multi-step synthetic procedures or uses chemical methods to dissolve cellulose and remold it. Here we present an in situ single-step method to produce self-standing 3D-BC structures with controllable wall thickness, size and geometry in a reproducible manner. Parameters such as hydrophobicity of the surfaces, volume of the inoculum and time of culture define the resulting 3D-BC structures. Hollow spheres and convex domes can be easily obtained by changing the surface wettability. The potential of these structures as a 3D cell scaffold is exemplified supporting the growth of mouse embryonic stem cells within a hollow spherical BC structure, indicating its biocompatibility and future prospective.


Asunto(s)
Celulosa/química , Gluconacetobacter xylinus/química , Propiedades de Superficie
8.
Nanomedicine ; 10(1): 225-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23792330

RESUMEN

Endothelial progenitor cells (EPCs) represent a promising approach for cell-based therapies to induce tissue repair; however, their effective delivery into the brain has remained a challenge. We loaded EPCs with superparamagnetic iron oxide nanoparticles (SPIONs), assessed their angiogenic potential and evaluated their guidance to the brain using an external magnet. SPIONs were stored in the cytoplasm within endosomes/lysosomes as observed by transmission electron microscopy (TEM) and could be visualized as hypointense signals by magnetic resonance imaging (MRI) T2-weighted images. In vitro SPION-loaded EPCs were fully functional, forming vessel-like structures in Matrigel®, and displayed enhanced migration and secretion of growth factors (VEGF and FGF), which was associated with a moderate increase in reactive oxygen species production. Furthermore, in vivo MRI of treated mice showed accumulated hypointense signals consistent with SPION-loaded EPCs engraftment. Thus, we demonstrate that loading EPCs with SPIONs represents a safe and effective strategy for precise cell guidance into specific brain areas. FROM THE CLINICAL EDITOR: This study investigates the potential role of endothelial progenitor cells in neuro-repair strategies of the central nervous system using SPION-loaded EPCs and magnetic guidance to the target organ. The authors demonstrate ex vivo cellular viability and maintained function following SPION load as well as successful guidance of the EPCs to the target site via MR imaging in a murine model.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Compuestos Férricos/administración & dosificación , Nanopartículas de Magnetita/administración & dosificación , Células Madre/efectos de los fármacos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Ratones , Microscopía Electrónica de Transmisión , Radiografía , Especies Reactivas de Oxígeno/metabolismo , Coloración y Etiquetado , Células Madre/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis
9.
Drug Deliv Transl Res ; 14(8): 2158-2169, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38363484

RESUMEN

Neuroblastoma is a pediatric tumor that originates during embryonic development and progresses into aggressive tumors, primarily affecting children under two years old. Many patients are diagnosed as high-risk and undergo chemotherapy, often leading to short- and long-term toxicities. Nanomedicine offers a promising solution to enhance drug efficacy and improve physical properties. In this study, lipid-based nanomedicines were developed with an average size of 140 nm, achieving a high encapsulation efficiency of over 90% for the anticancer drug etoposide. Then, cytotoxicity and apoptosis-inducing effects of these etoposide nanomedicines were assessed in vitro using human cell lines, both cancerous and non-cancerous. The results demonstrated that etoposide nanomedicines exhibited high toxicity and selectively induced apoptosis only in cancerous cells.Next, the biosafety of these nanomedicines in C. elegans, a model organism, was evaluated by measuring survival, body size, and the effect on dividing cells. The findings showed that the nanomedicines had a safer profile than the free etoposide in this model. Notably, nanomedicines exerted etoposide's antiproliferative effect only in highly proliferative germline cells. Therefore, the developed nanomedicines hold promise as safe drug delivery systems for etoposide, potentially leading to an improved therapeutic index for neuroblastoma treatment.


Asunto(s)
Apoptosis , Caenorhabditis elegans , Etopósido , Etopósido/administración & dosificación , Etopósido/química , Caenorhabditis elegans/efectos de los fármacos , Animales , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Nanomedicina , Lípidos/química , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula
10.
Carbohydr Polym ; 331: 121815, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388067

RESUMEN

Bacterial nanocellulose (BNC) is a promising dietary fiber with potential as a functional food additive. We evaluated BNC fibers (BNCf) in the Caenorhabditis elegans model to obtain insight into the BNCf's biointeraction with its gastrointestinal tract while reducing the variables of higher complex animals. BNCf were uptaken and excreted by worms without crossing the intestinal barrier, confirming its biosafety regarding survival rate, reproduction, and aging for concentrations up to 34 µg/ml BNCf. However, a slight decrease in the worms' length was detected. A possible nutrient shortage or stress produced by BNCf was discarded by measuring stress and chemotactic response pathways. Besides, we detected a lipid-lowering effect of BNCf in N2 C. elegans in normal and high-caloric diets. Oxidative damage was computed in N2 worms and Rac1/ced-10 mutants. The GTPase Rac1 is involved in neurological diseases, where its dysregulation enhances ROS production and neuronal damage. BNCf reduced the lipid oxidative markers produced by ROS species in this worm strain. Finally, we detected that BNCf activated the genetic expression of the immunological response and lipid catabolic process. These results strengthen the use of BNCf as a functional dietary fiber and encourage the potential treatment of neurological disease by modulating diet.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Bacterias/metabolismo , Fibras de la Dieta/farmacología , Fibras de la Dieta/metabolismo , Lípidos
11.
ACS Appl Bio Mater ; 6(9): 3638-3647, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37669535

RESUMEN

There is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the in vivo cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues. In this work, type I collagen is mixed with bacterial nanocellulose fibers (BCf) to develop reinforced scaffolds with mechanical properties suitable for 3D cell culture. BCf were produced from blended pellicles biosynthesized from Komagataeibacter xylinus. Then, BCf were mixed with concentrated collagen from rat-tail tendons to form composite hydrogels. Confocal laser scanning microscopy and scanning electron microscopy images confirmed the homogeneous macro- and microdistribution of both natural polymers. Porosity analysis confirmed that BCf do not disrupt the scaffold structure. Tensile strength and rheology measurements demonstrated the reinforcement action of BCf (43% increased stiffness) compared to the collagen hydrogel while maintaining the same viscoelastic response. Additionally, this reinforcement of collagen hydrogels with BCf offers the possibility to mix cells before gelation and then proceed to the culture of the 3D cell scaffolds. We obtained scaffolds with human bone marrow-derived mesenchymal stromal cells or human fibroblasts within the composite hydrogels, allowing a homogeneous 3D viable culture for at least 7 days. A smaller surface shrinkage in the reinforced hydrogels compared to type I collagen hydrogels confirmed the strengthening of the composite hydrogels. These collagen hydrogels reinforced with BCf might emerge as a promising platform for 3D in vitro organ modeling, tissue-engineering applications, and suitable to conduct fundamental mechanobiology studies.


Asunto(s)
Colágeno Tipo I , Gluconacetobacter xylinus , Humanos , Animales , Ratas , Colágeno Tipo I/farmacología , Técnicas de Cultivo Tridimensional de Células , Fibroblastos , Hidrogeles/farmacología
12.
ACS Nano ; 17(17): 17273-17284, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624669

RESUMEN

Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans) can bridge the gap between in vitro and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use. Since the nematodes' pharynx shares similarities with the human heart, we assessed the general and pharyngeal effects of drugs and polypyrrole nanoparticles (Ppy NPs) using C. elegans. The evaluation of FDA-approved drugs, such as Propranolol and Racepinephrine reproduced the arrhythmic behavior reported in humans and supported the use of this small animal model. Consequently, Ppy NPs were evaluated due to their research interest in cardiac arrhythmia treatments. The NPs' biocompatibility was confirmed by assessing survival, growth and development, reproduction, and transgenerational toxicity in C. elegans. Interestingly, the NPs increased the pharyngeal pumping rate of C. elegans in two slow-pumping mutant strains, JD21 and DA464. Moreover, the NPs increased the pumping rate over time, which sustained up to a day post-excretion. By measuring pharyngeal calcium levels, we found that the impact of Ppy NPs on the pumping rate could be mediated through calcium signaling. Thus, evaluating arrhythmic effects in C. elegans offers a simple system to test drugs and nanoparticles, as elucidated through Ppy NPs.


Asunto(s)
Caenorhabditis elegans , Nanopartículas , Animales , Humanos , Polímeros , Pirroles/farmacología
13.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37342003

RESUMEN

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Asunto(s)
Miocitos Cardíacos , Polímeros , Polímeros/química , Pirroles/química , Diferenciación Celular
14.
Artículo en Inglés | MEDLINE | ID: mdl-37372672

RESUMEN

The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM's vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM's Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.


Asunto(s)
Teléfono Celular , Campos Electromagnéticos , Humanos , Campos Electromagnéticos/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Ondas de Radio/efectos adversos
15.
Anal Chem ; 84(6): 2883-91, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22390675

RESUMEN

This paper describes a paper-based microfluidic device that measures two enzymatic markers of liver function (alkaline phosphatase, ALP, and aspartate aminotransferase, AST) and total serum protein. A device consists of four components: (i) a top plastic sheet, (ii) a filter membrane, (iii) a patterned paper chip containing the reagents necessary for analysis, and (iv) a bottom plastic sheet. The device performs both the sample preparation (separating blood plasma from erythrocytes) and the assays; it also enables both qualitative and quantitative analysis of data. The data obtained from the paper-microfluidic devices show standard deviations in calibration runs and "spiked" standards that are acceptable for routine clinical use. This device illustrates a type of test useable for a range of assays in resource-poor settings.


Asunto(s)
Proteínas Sanguíneas/análisis , Pruebas de Función Hepática/instrumentación , Hígado/enzimología , Técnicas Analíticas Microfluídicas/instrumentación , Papel , Fosfatasa Alcalina/metabolismo , Aspartato Aminotransferasas/metabolismo , Calibración , Diseño de Equipo , Filtración/instrumentación , Humanos , Sensibilidad y Especificidad
16.
Proc Natl Acad Sci U S A ; 106(44): 18457-62, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19846768

RESUMEN

Fundamental investigations of human biology, and the development of therapeutics, commonly rely on 2D cell-culture systems that do not accurately recapitulate the structure, function, or physiology of living tissues. Systems for 3D cultures exist but do not replicate the spatial distributions of oxygen, metabolites, and signaling molecules found in tissues. Microfabrication can create architecturally complex scaffolds for 3D cell cultures that circumvent some of these limitations; unfortunately, these approaches require instrumentation not commonly available in biology laboratories. Here we report that stacking and destacking layers of paper impregnated with suspensions of cells in extracellular matrix hydrogel makes it possible to control oxygen and nutrient gradients in 3D and to analyze molecular and genetic responses. Stacking assembles the "tissue", whereas destacking disassembles it, and allows its analysis. Breast cancer cells cultured within stacks of layered paper recapitulate behaviors observed both in 3D tumor spheroids in vitro and in tumors in vivo: Proliferating cells in the stacks localize in an outer layer a few hundreds of microns thick, and growth-arrested, apoptotic, and necrotic cells concentrate in the hypoxic core where hypoxia-sensitive genes are overexpressed. Altering gas permeability at the ends of stacks controlled the gradient in the concentration of the O(2) and was sufficient by itself to determine the distribution of viable cells in 3D. Cell cultures in stacked, paper-supported gels offer a uniquely flexible approach to study cell responses to 3D molecular gradients and to mimic tissue- and organ-level functions.


Asunto(s)
Bioensayo/métodos , Técnicas de Cultivo de Célula/métodos , Papel , Animales , Línea Celular , Separación Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrogeles/farmacología , Ratones , Oxígeno/farmacología , Permeabilidad/efectos de los fármacos
17.
ACS Nano ; 16(4): 5830-5838, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35298121

RESUMEN

Biocompatible nanoscaled metal-organic frameworks (nanoMOFs) have been widely studied as drug delivery systems (DDSs), through different administration routes, with rare examples in the convenient and commonly used oral administration. So far, the main objective of nanoMOFs as oral DDSs was to increase the bioavailability of the cargo, without considering the MOF intestinal crossing with potential advantages (e.g., increasing drug availability, direct transport to systemic circulation). Thus, we propose to address the direct quantification and visualization of MOFs' intestinal bypass. For that purpose, we select the microporous Fe-based nanoMOF, MIL-127, exhibiting interesting properties as a nanocarrier (great biocompatibility, large porosity accessible to different drugs, green and multigram scale synthesis, outstanding stability along the gastrointestinal tract). Additionally, the outer surface of MIL-127 was engineered with the biopolymer chitosan (CS@MIL-127) to improve the nanoMOF intestinal permeation. The biocompatibility and intestinal crossing of nanoMOFs is confirmed using a simple and relevant in vivo model, Caenorhabditis elegans; these worms are able to ingest enormous amounts of nanoMOFs (up to 35 g per kg of body weight). Finally, an ex vivo intestinal model (rat) is used to further support the nanoMOFs' bypass across the intestinal barrier, demonstrating a fast crossing (only 2 h). To the best of our knowledge, this report on the intestinal crossing of intact nanoMOFs sheds light on the safe and efficient application of MOFs as oral DDSs.


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Ratas , Animales , Sistemas de Liberación de Medicamentos , Porosidad , Administración Oral
18.
Nat Commun ; 13(1): 2620, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551180

RESUMEN

Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals' neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedades Mitocondriales , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Luteína/metabolismo , Luteína/farmacología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
19.
Carbohydr Polym ; 294: 119778, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868754

RESUMEN

Soft-tissue replacements are challenging due to the stringent compliance requirements for the implanted materials in terms of biocompatibility, durability, high wear resistance, low friction, and water content. Acrylate hydrogels are worth considering as soft tissue implants as they can be photocurable and sustain customized shapes through 3D bioprinting. However, acrylate-based hydrogels present weak mechanical properties and significant dimensional changes when immersed in liquids. To address these obstacles, we fabricated double network (DN) hydrogels composed of polyacrylic acid (PAA) and bacterial cellulose nanofibers (BCNFs) by one fast UV photopolymerization step. BCNFs/PAA hydrogels with a 0.5 wt% BCNFs content present an increased stiffness and a lower, non-pH-dependent swelling than PAA hydrogels or PAA hydrogels with cellulose nanocrystals. Besides, BCNFs/PAA hydrogels are biocompatible and can be frozen/thawed. Those characteristics endorse these hybrid hydrogels as potential candidates for vascular and cartilage tissue implants.


Asunto(s)
Bioimpresión , Hidrogeles , Acrilatos , Bacterias , Materiales Biocompatibles/química , Cartílago , Celulosa/química , Hidrogeles/química
20.
Adv Sci (Weinh) ; 9(26): e2201947, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861401

RESUMEN

Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i.e., using the well-known 3ω-method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1.63 W mK-1 in the direction of the aligned fibers versus 0.3 W mK-1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials.


Asunto(s)
Bacterias , Celulosa , Celulosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA