RESUMEN
A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence. Transmission electron microscopy images evidenced that cross-linking between cysCNCs took place. This cross-linking was utilized in a linseed oil-in-water Pickering emulsion system, creating a novel gelled Pickering emulsion system. The rheological properties of both DACNC suspensions and nanocellulose-stabilized Pickering emulsions were monitored during the cross-linking reaction. Dynamic light scattering and confocal laser scanning microscopy (CLSM) of the Pickering emulsion before gelling imaged CNC-stabilized oil droplets along with isolated CNC rods and CNC clusters, which had not been adsorbed to the oil droplet surfaces. Atomic force microscopy imaging of the air-dried gelled Pickering emulsion also demonstrated the presence of free CNCs alongside the oil droplets and the cross-linked CNC network directly at the oil-water interface on the oil droplet surfaces. Finally, these gelled Pickering emulsions were mixed with poly(vinyl alcohol) solutions and fabricated into self-healing composite coating systems. These self-healing composite coatings were then scratched and viewed under both an optical microscope and a scanning electron microscope before and after self-healing. The linseed oil was demonstrated to leak into the scratches, healing the gap automatically and giving a practical approach for a variety of potential applications.
Asunto(s)
Cistamina , Nanopartículas , Emulsiones/química , Aceite de Linaza , Celulosa/química , Nanopartículas/química , Agua/químicaRESUMEN
Understanding and mitigating optical loss is critical to the development of high-performance photonic integrated circuits (PICs). In particular, in high refractive index contrast compound semiconductor (III-V) PICs, surface absorption and scattering can be a significant loss mechanism, and needs to be suppressed. Here, we quantify the optical propagation loss due to surface state absorption in a suspended GaAs PIC platform, probe its origins using x-ray photoemission spectroscopy and spectroscopic ellipsometry, and show that it can be mitigated by surface passivation using alumina (Al2O3).
RESUMEN
Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics, however, the open-circuit voltage (VOC) deficit of CZTSSe prevents the device performance from exceeding 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is the doping and alloying of the material to suppress certain defects and improve crystallization, such as with germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here, we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, which are subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation, we demonstrate structural changes with a negligible change in the energy bandgap but substantial increases in the crystallinity and grain morphology, which are associated with a Ge-Se growth mechanism, and gains in both the VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape, which we attribute to a reduction in the segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.
RESUMEN
We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni_{0.25}Fe_{0.25}Co_{0.25}Cr_{0.25}. Our high-resolution Compton scattering experiments reveal a Fermi surface which is smeared across a significant fraction of the Brillouin zone (up to 40% of 2π/a). The extent of this smearing and its variation on and between different sheets of the Fermi surface have been determined, and estimates of the electron mean free path and residual resistivity have been made by connecting this smearing with the coherence length of the quasiparticle states.
RESUMEN
Doped BiVO4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO4. Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W6+ for V5+ in BiVO4. This is shown to result in the presence of inter-band gap states related to electrons at V4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO4.
RESUMEN
A highly hydrophobic fluorinated ionic liquid (IL), 3-aminopropyl-tributylphosphonium bis(trifluoromethylsolfonyl)imide ([aP4443][NTf2]), was synthesized, and applied for the surface modification of cellulose nanomaterials (CNMs) by reductive amination. The modified CNMs were fully characterized for their chemical structure, morphology, thermal stability, and surface hydrophobicity. Results obtained from Nuclear Magnetic Resonance spectroscopy (1H, 13C, 19F and 31P), Fourier Transform Infrared spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray diffraction confirmed the successful grafting of [aP4443][NTf2] onto the surface of CNMs up to a degree of surface functionalization of 2.5 %. Transmission Electron Microscopy analysis confirmed the dimensions of the CNMs were retained after modification but with significant aggregation for modified cellulose nanocrystals (CNCs). Thermal Gravimetric Analysis demonstrated significant increases in the degradation temperatures of modified CNCs from â¼252 °C to â¼310 °C. Modified cellulose nanofibers (CNFs) did not show any increase in thermal stability. The modified CNM suspensions showed reduced affinity for water and the formation of aggregates in aqueous media. Furthermore, a water contact angle test demonstrated enhanced hydrophobicity for modified CNMs. This modification approach holds potential for the use of the [aP4443][NTf2] IL for functional materials to achieve novel hydrophobic CNMs suitable for aqueous processing with thermoplastics, for fabrication of thermally stable composite materials, and for polymer gel electrolytes for batteries.
RESUMEN
Ever since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach via anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX2, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr2 as an example, which forms large layered crystals. We investigate the structural properties of both the bulk and 2D CuBr2 using X-ray diffraction, along with Raman scattering and optical spectroscopy, revealing its quasi-1D chain structure, which translates to distinct emission and scattering characteristics. Furthermore, microultraviolet photoemission spectroscopy and electronic transport reveal the electronic properties of CuBr2 flakes, including their valence band structure. We extend our methodology to other metal halides and assess the stability of the metal halide flakes in controlled environments. We show that optical contrast can be used to characterize the flake thicknesses for these materials. Our findings demonstrate the versatility and potential applications of the proposed methodology for preparing and studying 2D metal halide flakes.
RESUMEN
The influence of Sn(II) species on TiO2 is investigated. The absorption spectra of these materials are red-shifted by 115 nm to the visible region of the solar spectrum compared with P25 TiO2. This prominent red-shift is attributed to the interaction of Sn(II) 5s orbitals with the TiO2 decreasing the band gap of TiO2 by raising its valence band. The tin oxidation state and the materials electronic structure are evaluated using Mössbauer spectroscopy and valence band X-ray photoelectron spectroscopy respectively. These materials are active for sacrificial photo-generation of hydrogen in visible light.