Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 109(1): 175-185, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199120

RESUMEN

Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.


Asunto(s)
Adenosina , Eritropoyesis , Humanos , Adenosina/metabolismo , Hematopoyesis , Mielopoyesis , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular
2.
Br J Haematol ; 200(6): 812-820, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36464247

RESUMEN

Hypoxia-mediated red blood cell (RBC) sickling is central to the pathophysiology of sickle cell disease (SCD). The signalling nucleoside adenosine is thought to play a significant role in this process. This study investigated expression of the erythrocyte type 1 equilibrative nucleoside transporter (ENT1), a key regulator of plasma adenosine, in adult patients with SCD and carriers of sickle cell trait (SCT). Relative quantitative expression analysis of erythrocyte ENT1 was carried out by Western blot and flow cytometry. Patients with SCD with steady state conditions, either with SS or SC genotype, untreated or under hydroxycarbamide (HC) treatment, exhibited a relatively high variability of erythrocyte ENT1, but with levels not significantly different from normal controls. Most strikingly, expression of erythrocyte ENT1 was found to be significantly decreased in patients with SCD undergoing painful vaso-occlusive episode and, unexpectedly, also in healthy SCT carriers. Promoting hypoxia-induced adenosine signalling, the reduced expression of erythrocyte ENT1 might contribute to the pathophysiology of SCD and to the susceptibility of SCT individuals to altitude hypoxia or exercise to exhaustion.


Asunto(s)
Rasgo Drepanocítico , Humanos , Adenosina , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Eritrocitos/metabolismo , Hipoxia/metabolismo
3.
Br J Haematol ; 203(2): 319-326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37583261

RESUMEN

Sickle cell anaemia (SCA) is a monogenic disease with a highly variable clinical course. We aimed to investigate associations between microvascular function, haemolysis markers, blood viscosity and various types of SCA-related organ damage in a multicentric sub-Saharan African cohort of patients with SCA. In a cross-sectional study, we selected seven groups of adult patients with SS phenotype in Dakar and Bamako based on the following complications: leg ulcer, priapism, osteonecrosis, retinopathy, high tricuspid regurgitant jet velocity (TRV), macro-albuminuria or none. Clinical assessment, echocardiography, peripheral arterial tonometry, laboratory tests and blood viscosity measurement were performed. We explored statistical associations between the biological parameters and the six studied complications. Among 235 patients, 58 had high TRV, 46 osteonecrosis, 43 priapism, 33 leg ulcers, 31 retinopathy and 22 macroalbuminuria, whereas 36 had none of these complications. Multiple correspondence analysis revealed no cluster of complications. Lactate dehydrogenase levels were associated with high TRV, and blood viscosity was associated with retinopathy and the absence of macroalbuminuria. Despite extensive phenotyping of patients, no specific pattern of SCA-related complications was identified. New biomarkers are needed to predict SCA clinical expression to adapt patient management, especially in Africa, where healthcare resources are scarce.


Asunto(s)
Anemia de Células Falciformes , Úlcera de la Pierna , Osteonecrosis , Priapismo , Enfermedades de la Retina , Masculino , Adulto , Humanos , Hemólisis , Viscosidad Sanguínea , Estudios Transversales , Microcirculación , Senegal , Úlcera de la Pierna/etiología , Enfermedades de la Retina/etiología
4.
Blood ; 137(26): 3660-3669, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33763700

RESUMEN

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Asunto(s)
Antígenos de Grupos Sanguíneos , Discapacidades del Desarrollo , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Convulsiones , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Glicosilfosfatidilinositoles/genética , Humanos , Células K562 , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Convulsiones/enzimología , Convulsiones/genética
5.
Blood ; 137(25): 3548-3562, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33690842

RESUMEN

The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Eritropoyesis , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Animales , Tranportador Equilibrativo 1 de Nucleósido/genética , Humanos , Ratones , Ratones Noqueados
6.
Blood ; 137(17): 2285-2298, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33657208

RESUMEN

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Animales , Transfusión de Eritrocitos , Cinética , Ratones , Esferocitos
7.
Transfusion ; 63(3): 610-618, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744388

RESUMEN

BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).


Asunto(s)
Antígenos de Grupos Sanguíneos , Embarazo , Femenino , Humanos , Células HEK293 , Prevalencia , Antígenos de Grupos Sanguíneos/genética , Isoanticuerpos , Estructura Molecular
8.
Br J Haematol ; 196(5): 1159-1169, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34962643

RESUMEN

COVID-19 has compelled scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors, such as older age, obesity, and diabetes mellitus, suggest a central role of endothelial cells (ECs), autopsies have revealed clots in the pulmonary microvasculature that are rich in neutrophils and DNA traps produced by these cells, called neutrophil extracellular traps (NETs.) Submicron extracellular vesicles, called microparticles (MPs), are described in several diseases as being involved in pro-inflammatory pathways. Therefore, in this study, we analyzed three patient groups: one for which intubation was not necessary, an intubated group, and one group after extubation. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell (EC)-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered EC death and overexpression of two adhesion molecules: P-selectin and vascular cell adhesion molecule-1 (VCAM-1). Strikingly, neutrophil adhesion and NET production were increased following incubation with these ECs. Importantly, we also found that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein, annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Taken together, our results reveal that MPs play a key role in COVID-19 pathophysiology and point to a potential therapeutic: annexin A5.


Asunto(s)
COVID-19/inmunología , Micropartículas Derivadas de Células/inmunología , Células Endoteliales/inmunología , Neutrófilos/inmunología , SARS-CoV-2/inmunología , COVID-19/patología , COVID-19/terapia , Adhesión Celular , Muerte Celular , Micropartículas Derivadas de Células/patología , Células Cultivadas , Células Endoteliales/patología , Trampas Extracelulares/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Intubación , Neutrófilos/patología , Fosfatidilserinas/inmunología
9.
Blood ; 135(6): 441-448, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31826245

RESUMEN

The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Agregación Plaquetaria , Plaquetas/citología , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/citología , Células Eritroides/metabolismo , Eliminación de Gen , Humanos , Fenotipo
10.
Haematologica ; 107(1): 167-177, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406813

RESUMEN

Erythroblast maturation in mammals is dependent on organelle clearance throughout terminal erythropoiesis. We studied the role of the outer mitochondrial membrane protein voltage-dependent anion channel-1 (VDAC1) in human terminal erythropoiesis. We show that short hairpin (shRNA)-mediated downregulation of VDAC1 accelerates erythroblast maturation. Thereafter, erythroblasts are blocked at the orthochromatic stage, exhibiting a significant decreased level of enucleation, concomitant with an increased cell death. We demonstrate that mitochondria clearance starts at the transition from basophilic to polychromatic erythroblast, and that VDAC1 downregulation induces the mitochondrial retention. In damaged mitochondria from non-erythroid cells, VDAC1 was identified as a target for Parkin-mediated ubiquitination to recruit the phagophore. Here, we showed that VDAC1 is involved in phagophore's membrane recruitment regulating selective mitophagy of still functional mitochondria from human erythroblasts. These findings demonstrate for the first time a crucial role for VDAC1 in human erythroblast terminal differentiation, regulating mitochondria clearance.


Asunto(s)
Mitocondrias , Mitofagia , Animales , Apoptosis , Diferenciación Celular , Eritroblastos/metabolismo , Eritropoyesis , Humanos , Mamíferos , Mitocondrias/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA