Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586412

RESUMEN

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Masculino , Femenino , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Regulación de la Expresión Génica , Cara , Proteínas Nucleares/genética , Histona Demetilasas/genética
2.
Nucleic Acids Res ; 40(10): 4334-46, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22278882

RESUMEN

While DNA methyltransferase1 (DNMT1) is classically known for its functions as a maintenance methyltransferase enzyme, additional roles for DNMT1 in gene expression are not as clearly understood. Several groups have shown that deletion of the catalytic domain from DNMT1 does not abolish repressive activity of the protein against a reporter gene. In our studies, we examine the repressor function of catalytically inactive DNMT1 at endogenous genes. First, potential DNMT1 target genes were identified by searching for genes up-regulated in HCT116 colon cancer cells genetically disrupted for DNMT1 (DNMT1(-/-) hypomorph cells). Next, the requirement for DNMT1 activity for repression of these genes was assessed by stably restoring expression of wild-type or catalytically inactive DNMT1. Both wild-type and mutant proteins are able to occupy the promoters and repress the expression of a set of target genes, and induce, at these promoters, both the depletion of active histone marks and the recruitment of a H3K4 demethylase, KDM1A/LSD1. Together, our findings show that there are genes for which DNMT1 acts as a transcriptional repressor independent from its methyltransferase function and that this repressive function may invoke a role for a scaffolding function of the protein at target genes.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Proteínas Represoras/metabolismo , Biocatálisis , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Histonas/metabolismo , Humanos , Mutación , Regiones Promotoras Genéticas , Proteínas Represoras/genética
3.
BMC Genomics ; 9: 566, 2008 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19038032

RESUMEN

BACKGROUND: Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. RESULTS: We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3' end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. CONCLUSION: Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species.


Asunto(s)
Burkholderia mallei/genética , Variación Genética , Islas Genómicas , Transferencia de Gen Horizontal , ARN de Transferencia/genética , Terminología como Asunto
4.
Cancer Res ; 78(5): 1127-1139, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29282222

RESUMEN

The H3K4 demethylase KDM5B is amplified and overexpressed in luminal breast cancer, suggesting it might constitute a potential cancer therapy target. Here, we characterize, in breast cancer cells, the molecular effects of a recently developed small-molecule inhibitor of the KDM5 family of proteins (KDM5i), either alone or in combination with the DNA-demethylating agent 5-aza-2'-deoxycytidine (DAC). KDM5i treatment alone increased expression of a small number of genes, whereas combined treatment with DAC enhanced the effects of the latter for increasing expression of hundreds of DAC-responsive genes. ChIP-seq studies revealed that KDM5i resulted in the broadening of existing H3K4me3 peaks. Furthermore, cells treated with the drug combination exhibited increased promoter and gene body H3K4me3 occupancy at DAC-responsive genes compared with DAC alone. Importantly, treatment with either DAC or DAC+KDM5i induced a dramatic increase in H3K27ac at enhancers with an associated significant increase in target gene expression, suggesting a previously unappreciated effect of DAC on transcriptional regulation. KDM5i synergized with DAC to reduce the viability of luminal breast cancer cells in in vitro assays. Our study provides the first look into the molecular effects of a novel KDM5i compound and suggests that combinatorial inhibition along with DAC represents a new area to explore in translational epigenetics.Significance: This study offers a first look into the molecular effects of a novel KDM5 inhibitory compound, suggesting how its use in combination with DNA methylation inhibitors presents new opportunities to explore in translational cancer epigenetics. Cancer Res; 78(5); 1127-39. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Metilación de ADN , Decitabina/farmacología , Inhibidores Enzimáticos/farmacología , Genoma Humano , Histonas/química , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Apoptosis , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Proliferación Celular , Epigénesis Genética , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA