Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500537

RESUMEN

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Asunto(s)
Carbono/metabolismo , Citosol/metabolismo , Formiatos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Tetrahidrofolatos/metabolismo , Citosol/patología , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacología , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tetrahidrofolato Deshidrogenasa/metabolismo
2.
Cell ; 171(7): 1545-1558.e18, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153836

RESUMEN

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Asunto(s)
Regulación de la Expresión Génica , Lipogénesis , Procesamiento Postranscripcional del ARN , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Femenino , Xenoinjertos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
3.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848689

RESUMEN

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Complejo de la Endopetidasa Proteasomal , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Animales , Ácido Mevalónico/metabolismo , Ubiquitina/metabolismo
4.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595559

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Asunto(s)
Arginina , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Lipogénesis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Factores de Empalme de ARN , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Humanos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
5.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756105

RESUMEN

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estabilidad del ARN , Adenosina/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Modelos Biológicos , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal
6.
Mol Cell ; 70(5): 949-960.e4, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861159

RESUMEN

The mammalian Target of Rapamycin Complex 1 (mTORC1)-signaling system plays a critical role in the maintenance of cellular homeostasis by sensing and integrating multiple extracellular and intracellular cues. Therefore, uncovering the effectors of mTORC1 signaling is pivotal to understanding its pathophysiological effects. Here we report that the transcription factor forkhead/winged helix family k1 (Foxk1) is a mediator of mTORC1-regulated gene expression. Surprisingly, Foxk1 phosphorylation is increased upon mTORC1 suppression, which elicits a 14-3-3 interaction, a reduction of DNA binding, and nuclear exclusion. Mechanistically, this occurs by mTORC1-dependent suppression of nuclear signaling by the Foxk1 kinase, Gsk3. This pathway then regulates the expression of multiple genes associated with glycolysis and downstream anabolic pathways directly modulated by Foxk1 and/or by Foxk1-regulated expression of Hif-1α. Thus, Foxk1 mediates mTORC1-driven metabolic rewiring, and it is likely to be critical for metabolic diseases where improper mTORC1 signaling plays an important role.


Asunto(s)
Reprogramación Celular , Metabolismo Energético , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Proliferación Celular , Regulación hacia Abajo , Factores de Transcripción Forkhead/genética , Glucógeno Sintasa Quinasa 3/genética , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fosforilación , Unión Proteica , Transducción de Señal
7.
Trends Biochem Sci ; 45(5): 367-369, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311329

RESUMEN

Using cryo-electron microscopy and molecular characterization, David Sabatini and colleagues provide crucial new insights that validate and expand their model of how amino acids are sensed and signal at the lysosome to activate mechanistic target of rapamycin complex 1 (mTORC1) and cell growth-regulating processes. This work also reveals new therapeutic opportunities for mTORC1-driven diseases.


Asunto(s)
Microscopía por Crioelectrón , Transducción de Señal , Aminoácidos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
8.
J Biol Chem ; 299(9): 105175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37599001

RESUMEN

N6-adenosine methylation (m6A) is the most abundant mRNA modification that controls gene expression through diverse mechanisms. Accordingly, m6A-dependent regulation of oncogenes and tumor suppressors contributes to tumor development. However, the role of m6A-mediated gene regulation upon drug treatment or resistance is poorly understood. Here, we report that m6A modification of mitogen-activated protein kinase 13 (MAPK13) mRNA determines the sensitivity of cancer cells to the mechanistic target of rapamycin complex 1 (mTORC1)-targeting agent rapamycin. mTORC1 induces m6A modification of MAPK13 mRNA at its 3' untranslated region through the methyltransferase-like 3 (METTL3)-METTL14-Wilms' tumor 1-associating protein(WTAP) methyltransferase complex, facilitating its mRNA degradation via an m6A reader protein YTH domain family protein 2. Rapamycin blunts this process and stabilizes MAPK13. On the other hand, genetic or pharmacological inhibition of MAPK13 enhances rapamycin's anticancer effects, which suggests that MAPK13 confers a progrowth signal upon rapamycin treatment, thereby limiting rapamycin efficacy. Together, our data indicate that rapamycin-mediated MAPK13 mRNA stabilization underlies drug resistance, and it should be considered as a promising therapeutic target to sensitize cancer cells to rapamycin.

9.
Cell ; 139(6): 1096-108, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005803

RESUMEN

How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. Here, we find that a conserved microRNA miR-8 and its target, USH, regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85alpha, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. Our study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer.


Asunto(s)
Tamaño Corporal , Drosophila melanogaster/fisiología , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Tejido Adiposo/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Humanos , MicroARNs/genética , Mutación , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649236

RESUMEN

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metiltransferasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Metilación , Metiltransferasas/genética , Receptores Nucleares Huérfanos , Estabilidad del ARN , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética
11.
Aging Ment Health ; : 1-8, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38919075

RESUMEN

OBJECTIVES: The first aim of the study is to compare loneliness levels between widowed and non-widowed older adults. The second aim is to identify distinct loneliness patterns among widowed individuals and explore the impact of pre-spousal loss social support on loneliness during and after bereavement. METHOD: Data from the Health and Retirement Study were utilized to compare loneliness levels between widowed (n = 137) and non-widowed (n = 2361) older adults (Mage = 69.01). T-tests and latent growth curve models were conducted to compare loneliness levels between the two groups. Growth mixture models were computed to identify distinct loneliness patterns among the widowed individuals. A multinomial logistic regression analysis was conducted to determine how pre-widowhood social support was associated with the obtained classes. RESULTS: The results revealed that widowed individuals reported significantly higher levels of loneliness at T2. Among widowed individuals, three distinct loneliness patterns were identified: Increased Loneliness (IL) group (n = 32); Low and Stable Loneliness (LSL) group (n = 88); and Decreased Loneliness (DL) group (n = 17). The IL and DL group were less likely to receive social support from spouse, children, and friends compared to the LSL group. CONCLUSION: This study provides evidence of the protective effect of pre-widowhood social support on the psychological well-being of older adults after spousal loss.

12.
Genes Dev ; 30(22): 2551-2564, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913603

RESUMEN

Noncanonical mechanistic target of rapamycin (mTOR) pathways remain poorly understood. Mutations in the tumor suppressor folliculin (FLCN) cause Birt-Hogg-Dubé syndrome, a hamartomatous disease marked by mitochondria-rich kidney tumors. FLCN functionally interacts with mTOR and is expressed in most tissues, but its role in fat has not been explored. We show here that FLCN regulates adipose tissue browning via mTOR and the transcription factor TFE3. Adipose-specific deletion of FLCN relieves mTOR-dependent cytoplasmic retention of TFE3, leading to direct induction of the PGC-1 transcriptional coactivators, drivers of mitochondrial biogenesis and the browning program. Cytoplasmic retention of TFE3 by mTOR is sensitive to ambient amino acids, is independent of growth factor and tuberous sclerosis complex (TSC) signaling, is driven by RagC/D, and is separable from canonical mTOR signaling to S6K. Codeletion of TFE3 in adipose-specific FLCN knockout animals rescues adipose tissue browning, as does codeletion of PGC-1ß. Conversely, inducible expression of PGC-1ß in white adipose tissue is sufficient to induce beige fat gene expression in vivo. These data thus unveil a novel FLCN-mTOR-TFE3-PGC-1ß pathway-separate from the canonical TSC-mTOR-S6K pathway-that regulates browning of adipose tissue.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Respiración de la Célula/genética , Citoplasma/metabolismo , Eliminación de Gen , Masculino , Ratones , Mitocondrias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
13.
Clin Infect Dis ; 76(2): 252-262, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36134518

RESUMEN

BACKGROUND: We conducted a prospective cohort study at Kaiser Permanente Southern California to evaluate the relative vaccine effectiveness (rVE) of a booster dose vs 2-dose primary series of messenger RNA (mRNA)-1273 in immunocompetent individuals. METHODS: Immunocompetent adults who received a booster dose of mRNA-1273 from October 2021 through December 2021 were matched 1:1 to randomly selected 2-dose mRNA-1273 recipients by age, sex, race/ethnicity, and second-dose date and followed up through January 2022. Cox proportional hazards models were used to estimate adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs), comparing outcomes (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infection and coronavirus disease 2019 [COVID-19] hospitalization and hospital death) in the booster-dose and 2-dose groups. Adjusted rVE (%) was calculated as (1 - aHR) × 100. aHRs and rVE were also estimated by subgroup and month of follow-up. RESULTS: The study included 431 328 booster-dose vaccinated adults matched to 431 328 2-dose vaccinated adults. rVE was 61.3% (95% CI: 60.5%-62.2%) against SARS-CoV-2 infection, 89.0% (86.2%-91.2%) against COVID-19 hospitalization, and 96.0% (68.0%-99.5%) against COVID-19 hospital death. rVE against SARS-CoV-2 infection ranged from 55.6% to 66.7% across all subgroups. rVE against SARS-CoV-2 infection decreased from 67.1% (0 to <1 month of follow-up) to 30.5% (2 to <3 months). For COVID-19 hospitalization, rVE decreased from 91.2% (0 to <1 month) to 78.7% (2 to <3 months). CONCLUSIONS: Among immunocompetent adults, the mRNA-1273 booster conferred additional protection against SARS-CoV-2 infection and severe COVID-19 disease compared with the 2-dose mRNA-1273 primary series during periods of Delta and Omicron predominance.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Adulto , Humanos , Estudios Prospectivos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , ARN Mensajero
14.
Gerontology ; 69(1): 47-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35316808

RESUMEN

INTRODUCTION: Concomitant risk factors challenge the mechanistic understanding of cardiac aging. We determined the degree to which the left atrial function could be distinguished by advanced cardiac magnetic resonance (CMR) imaging in older adults and assessed associations between the left atrial function and the plasma biomarkers related to biological aging and cardiovascular disease [serum monocyte chemoattractant protein-1 (MCP1), matrix metallopeptidase 9 (MMP-9), B-type natriuretic peptides (BNPs), galectin-3 (Gal-3), high-sensitivity cardiac troponin I (hsTn1), high-sensitivity C-reactive protein (hs-CRP), and soluble urokinase plasminogen activator receptor (sUPAR)]. METHODS: Among a cross-sectional population-based cohort of older adults, longitudinal LA strain including reservoir strain (εs), conduit strain (εe), and booster strain (εa) as well as peak strain rates (SRs, SRe, SRa) were determined using CMR and studied in association with blood biomarkers. RESULTS: We studied 243 community adults (42.8% female, mean age 70.3 ± 9.5 years). In bivariate analysis, εe and SRe were reduced in gradation with increasing risk factors (all p values <0.0001). Corresponding levels of sUPAR (ng/mL) were quantitatively higher in older adults with <2 risk factors (2.5 ± 1.6 vs. 1.7 ± 1.3, p = 0.0005), in those with ≥2 risk factors (3.3 ± 2.4 vs. 1.7 ± 1.3, p < 0.0001), compared to young adults; including between older adults with ≥2 risk factors and older adults with <2 risk factors (3.3 ± 2.4 vs. 2.5 ± 1.6, p = 0.017). Based on multivariate analysis, sUPAR was significantly associated with both εe (OR 1.52, p = 0.006) and SRe decline (OR 1.5, p = 0.019). The associations between Gal-3 and εe reduction (OR 1.2, p = 0.022) and between BNP and SRe decline were generally weaker (OR 1.03, p = 0.027). The addition of sUPAR to a model consisting of age, risk factors, Gal-3, and BNPs increased the area under the curve of εe from 0.72 to 0.77 (p = 0.015). CONCLUSION: By advanced CMR imaging, a panel of circulating biomarkers comprising galectin, MMP-9 and sUPAR were associated with left atrial dysfunction in older adults. Higher levels of Gal-3 and MMP-9 may be suggestive of fibrotic mechanisms in left atrial aging while impairments in left atrial strain seen in association with circulating sUPAR may be related to immune activation in the left atrium in response to left atrial remodeling and fibrotic processes.


Asunto(s)
Fibrilación Atrial , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Humanos , Femenino , Anciano , Masculino , Función del Atrio Izquierdo/fisiología , Estudios Transversales , Metaloproteinasa 9 de la Matriz
15.
Aging Ment Health ; 27(9): 1720-1728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36786734

RESUMEN

OBJECTIVES: The purpose of the study was to examine a bivariate latent change score model of depressive symptoms and functional limitations (activities of daily living) among centenarian or near-centenarian survivors over four waves using the Health and Retirement Study. METHOD: Four hundred and sixty participants who eventually survived to age 98 or older were included by calculating their death age. Data from the time when the participants were in their 80s were analyzed. The mean age at baseline (1994) was 85.5 years. The observation interval was 2 years, from 1994 to 2000. Including age, gender, and education as a covariate, eight different models were conducted to examine the bivariate effects among depressive symptoms and functional limitations. RESULTS: Of the eight models, the bivariate model of depressive symptoms predicting change in functional limitations fitted the data best. The parameter estimates of the final model indicated significant predictive pathways from depressive symptoms to subsequent changes in depressive symptoms and functional limitations. CONCLUSION: This study tested the bidirectional relationship between depressive symptoms and functional limitations among centenarian survivors in their 80s, which uncovered that depressive symptoms is a dominant variable among the two constructs. Our findings add to a lacking number of longitudinal studies with oldest old adults.


Asunto(s)
Actividades Cotidianas , Depresión , Anciano de 80 o más Años , Humanos , Depresión/epidemiología , Depresión/diagnóstico , Centenarios , Estudios Longitudinales , Jubilación
16.
Exp Aging Res ; 49(4): 334-346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35929967

RESUMEN

OBJECTIVES: Living a long life does not guarantee the maintenance of optimal cognitive functioning; however, similar to older adults in general, cognitive reserve may also protect oldest-old adults from cognitive decline. The purpose of this study was to assess cognitive reserve among centenarians and octogenarians and to evaluate a process model of cognitive reserve. METHODS: A total of 321 centenarians and octogenarians from the Georgia Centenarian Study were included in this study. Cognitive reserve components included level of education, occupational responsibility, current social engagement, past engaged lifestyle, and activity. Cognitive functioning was measured with the Mini-Mental Status Examination. RESULTS: Structural equation modeling was computed, and the overall model fit well, χ2 (df = 3) = 5.02, p = .17; CFI = .99, RMSEA = .05. Education is directly and indirectly related to cognitive functioning through occupational responsibility and past engaged lifestyle. Current social engagement is related to cognitive functioning directly and indirectly through current activities. The four direct predictors (i.e., education, current social engagement, current activity, and past engaged lifestyle) explained 35% of the variance in cognitive functioning. CONCLUSION: The results provide important information for cognitive reserve theories with implications for interventions that build cognitive reserve.


Asunto(s)
Disfunción Cognitiva , Reserva Cognitiva , Anciano de 80 o más Años , Humanos , Anciano , Centenarios , Georgia , Envejecimiento/psicología , Cognición , Disfunción Cognitiva/epidemiología
17.
Brain ; 144(4): 1230-1246, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855339

RESUMEN

Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/metabolismo , Purinas/biosíntesis , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Ácido Micofenólico/farmacología , Temozolomida/farmacología , Células Tumorales Cultivadas
18.
Mol Cell ; 53(4): 519-20, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24560271

RESUMEN

Cells must tightly control alternative splicing of RNA to maintain homeostasis; in this issue of Molecular Cell, Sanidas et al. (2014) provide new insights into the regulation of RNA splicing by Akt isoforms through phosphorylation of histone modification machinery.


Asunto(s)
Empalme Alternativo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Humanos , Proteínas de Unión al ARN , Factores de Transcripción
19.
BMC Geriatr ; 22(1): 933, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463121

RESUMEN

BACKGROUND: Implementation of physical activity strategies in older populations may be influenced by underlying psychosocial and gender-based factors to physical activity. We explored associations between these factors and physical activity behaviors and technology among older men and women. METHODS: Community older adults underwent echocardiography and interviewer administered questionnaires that collected physical activity habits, self-motivation, self-empowerment and smartphone usage patterns associated with physical activity. Aerobic capacity was denoted by VO2max (High VO2 was defined as VO2 > 35 (ml/kg/min) for men or VO2 > 27 (ml/kg/min) for women). RESULTS: Among 180 participants (mean age 77 (71-80) years; 43% females), 101 (56.1%) had a low VO2max. Barriers to activity were lack of time (27.8%), tiredness (26.7%), affordability (12.8%) and pain while exercising (12.2%). Compared to participants with high VO2max, those with low VO2max were less likely to report feeling good post-exercise (70.3% vs 86.1%, adjusted p = 0.041) and express barriers to exercise (72.3% vs 88.6%, adjusted p = 0.017). Compared to men, women were more likely to express motivation for exercise if they were guided by an instructor (20.5% vs 1.96%, adjusted p = 0.027), less likely to prefer control over exercise type and difficulty (57.7% vs 82.4%, adjusted p = 0.001), express interest in smartphone apps (7.84% vs 24.4%, adjusted p = 0.01) and participate in apps-guided exercise (10.3% vs 29.4%, adjusted p = 0.001). Major factors that motivated the use of smartphone applications to manage individual health were financial incentives (23.9%) and guidance on exercise routines (21.1%) while the reveal of personal information was a major deterrent (28.3%). CONCLUSIONS: We observed differences in physical activity motivation, empowerment and technology use based on gender and functional status. Tailoring physical activity strategies, including digital health strategies, that target psychosocial and gender-based factors may improve activity participation in older adults.


Asunto(s)
Ejercicio Físico , Motivación , Masculino , Humanos , Femenino , Anciano , Tecnología , Hábitos , Tolerancia al Ejercicio
20.
Dev Med Child Neurol ; 63(5): 545-551, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33219706

RESUMEN

AIM: To determine if constraint-induced movement therapy (CIMT) is more effective than standard care in improving upper-limb activity outcomes in children with neonatal brachial plexus palsy (NBPP). METHOD: Twenty-one children with NBPP (mean age 25mo, SD=10.3, range=17-48mo; 11 males, 10 females) were enrolled in a crossover trial and randomly allocated to first receive CIMT or standard care, each for 8 weeks. The intervention arm consisted of 3 weeks of casting the unaffected limb followed by 5 weeks of transference activities. The Assisting Hand Assessment (AHA) was used to measure bimanual activity performance at baseline, 8 weeks, and 16 weeks, scored by blinded raters. The Pediatric Motor Activity Log-Revised (PMAL-R) was used as a caregiver-reported secondary outcome measure. RESULTS: After concealed random allocation (n=21), there were no significant differences on demographics or baseline measures. CIMT was superior compared to control in terms of bimanual activity performance with a mean difference in AHA change score of 4.8 (SD=10.5, p=0.04, Cohen's δ=0.46). There were no significant differences between treatment conditions on the PMAL-R. INTERPRETATION: CIMT is favored over standard care for bimanual activity performance. Future research should investigate a longer follow-up period, additional comparator interventions, and analyse differences by participant characteristics. WHAT THIS PAPER ADDS: Gains in bimanual activity performance were greater after constraint-induced movement therapy (CIMT) compared to no CIMT. Frequency and quality of movement were not significantly different between treatment groups.


Asunto(s)
Actividad Motora/fisiología , Parálisis Neonatal del Plexo Braquial/rehabilitación , Modalidades de Fisioterapia , Preescolar , Estudios Cruzados , Femenino , Humanos , Lactante , Movimiento/fisiología , Parálisis Neonatal del Plexo Braquial/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA