Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2404684121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39110726

RESUMEN

Transparent solar cells (TSCs) hold substantial potential as continuous energy generators, enabling their use in situations where conventional devices may not be feasible. However, research aimed at modularizing TSCs for the purpose of regulating the overall voltage and current they produce, a critical step toward practical application, is still in its nascent stages. In this study, we explored a custom-designed, all-back-contact (ABC) configuration, which situates all electrical contacts on the rear side, to create glass-like transparent crystalline silicon (c-Si) solar cells and seamless modules. The ABC design not only demonstrates high power conversion efficiency (PCE) in solar cells but also ensures unobstructed visibility through transparent solar modules. Notably, ABC-transparent c-Si solar cells achieved a peak PCE of 15.8% while maintaining an average visible transmittance of 20%. Through seamlessly interconnecting the unit cells, the output voltage and power were systematically tuned from 0.64 V and 15.8 mW (for a 1 cm2-sized unit cell) to 10.0 V and 235 mW (for a 16 cm2-sized module). Furthermore, we successfully demonstrated the photocharging of a smartphone using a transparent ABC solar module.

2.
ACS Appl Mater Interfaces ; 16(29): 37972-37980, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39010759

RESUMEN

The efficiency of copper indium gallium selenide (CIGS) solar cells that use transparent conductive oxide (TCO) as the top electrode decreases significantly as the device area increases owing to the poor electrical properties of TCO. Therefore, high-efficiency, large-area CIGS solar cells require the development of a novel top electrode with high transmittance and conductivity. In this study, a microgrid/TCO hybrid electrode is designed to minimize the optical and resistive losses that may occur in the top electrode of a CIGS solar cell. In addition, the buffer layer of the CIGS solar cells is changed from the conventional CdS buffer to a dry-processed wide-band gap ZnMgO (ZMO) buffer, resulting in increased device efficiency by minimizing parasitic absorption in the short-wavelength region. By optimizing the combination of ZMO buffer and the microgrid/TCO hybrid electrode, a device efficiency of up to 20.5% (with antireflection layers) is achieved over a small device area of 5 mm × 5 mm (total area). Moreover, CIGS solar cells with an increased device area of up to 20 mm × 70 mm (total area) exhibit an efficiency of up to 19.7% (with antireflection layers) when a microgrid/TCO hybrid electrode is applied. Thus, this study demonstrates the potential for high-efficiency, large-area CIGS solar cells with novel microgrid electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA