Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639491

RESUMEN

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

2.
Malar J ; 18(1): 38, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767768

RESUMEN

BACKGROUND: Rodent malaria models are extensively used to predict treatment outcomes in human infections. There is a constant need to improve and refine these models by innovating ways to apply new scientific findings and cutting edge technologies. In addition, and in accordance with the three R's of animal use in research, in vivo studies should be constantly refined to avoid unnecessary pain and distress to the experimental animals by using preemptive euthanasia as soon as the main scientific study objective has been accomplished. METHODS: The new methodology described in this manuscript uses the whole-body bioluminescence signal emitted by transgenic, luciferase-expressing Plasmodium berghei parasites to assess the parasite load predicted parasitaemia (PLPP) in drug and control treated female ICR-CD1 mice infected with 1 × 105 luciferase-expressing P. berghei (ANKA strain) infected erythrocytes. This methodology can replace other time-consuming and expensive methods that are routinely used to measure parasitaemia in infected animals, such as Giemsa-stained thin blood smears and flow cytometry. RESULTS: There is a good correlation between whole-body bioluminescence signal and parasitaemia measured using Giemsa-stained thin blood smears and flow cytometry respectively in donor and study mice in the modified Thompson test. The algebraic formulas which represent these correlations can be successfully used to assess PLPP in donor and study mice. In addition, the new methodology can pinpoint sick animals 2-8 days before they would have been otherwise diagnosed based on behavioural or any other signs of malaria disease. CONCLUSIONS: The new method for predicting parasitaemia in the modified Thompson test is simple, precise, objective, and minimizes false positive results that can lead to the premature removal of animals from study. Furthermore, from the animal welfare perspective of replace, reduce, and refine, this new method facilitates early removal of sick animals from study as soon as the study objective has been achieved, in many cases well before the clinical signs of disease are present.


Asunto(s)
Antimaláricos/administración & dosificación , Modelos Animales de Enfermedad , Mediciones Luminiscentes/métodos , Malaria/diagnóstico por imagen , Carga de Parásitos , Parasitemia/diagnóstico por imagen , Imagen de Cuerpo Entero/métodos , Animales , Femenino , Genes Reporteros , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones Endogámicos ICR , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Coloración y Etiquetado , Resultado del Tratamiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-28137819

RESUMEN

In any drug discovery and development effort, a reduction in the time of the lead optimization cycle is critical to decrease the time to license and reduce costs. In addition, ethical guidelines call for the more ethical use of animals to minimize the number of animals used and decrease their suffering. Therefore, any effort to develop drugs to treat cutaneous leishmaniasis requires multiple tiers of in vivo testing that start with higher-throughput efficacy assessments and progress to lower-throughput models with the most clinical relevance. Here, we describe the validation of a high-throughput, first-tier, noninvasive model of lesion suppression that uses an in vivo optical imaging technology for the initial screening of compounds. A strong correlation between luciferase activity and the parasite load at up to 18 days postinfection was found. This correlation allows the direct assessment of the effects of drug treatment on parasite burden. We demonstrate that there is a strong correlation between drug efficacy measured on day 18 postinfection and the suppression of lesion size by day 60 postinfection, which allows us to reach an accurate conclusion on drug efficacy in only 18 days. Compounds demonstrating a significant reduction in the bioluminescence signal compared to that in control animals can be tested in lower-throughput, more definitive tests of lesion cure in BALB/c mice and Golden Syrian hamsters (GSH) using Old World and New World parasites.


Asunto(s)
Antiprotozoarios/farmacología , Ensayos Analíticos de Alto Rendimiento , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Organismos Modificados Genéticamente , Anfotericina B/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/economía , Evaluación Preclínica de Medicamentos/métodos , Femenino , Luciferina de Luciérnaga/administración & dosificación , Fluconazol/farmacología , Genes Reporteros , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Macrófagos/citología , Macrófagos/efectos de los fármacos , Meglumina/farmacología , Antimoniato de Meglumina , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ofloxacino/farmacología , Imagen Óptica , Compuestos Organometálicos/farmacología , Triazoles/farmacología
4.
Antimicrob Agents Chemother ; 60(4): 2417-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26856829

RESUMEN

The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia.P. falciparumlaboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z') analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.


Asunto(s)
Bioensayo/normas , Colorantes Fluorescentes/química , Malaria Falciparum/diagnóstico , Compuestos Orgánicos/química , Parasitemia/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Antimaláricos/farmacología , Artemisininas/farmacología , Atovacuona/farmacología , Benzotiazoles , Cloroquina/farmacología , ADN Protozoario/análisis , Diaminas , Resistencia a Medicamentos/genética , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mefloquina/farmacología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Vigilancia en Salud Pública , Quinolinas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
J Med Chem ; 67(10): 8323-8345, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38722757

RESUMEN

Leishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against Plasmodium spp, as a novel class of antileishmanial agents. Herein, we report in vitro and in vivo antileishmanial activities, detailed structure-activity relationships, and metabolic/pharmacokinetic profiles of a large library of tambjamines. A number of tambjamines exhibited excellent potency against both Leishmania mexicana and Leishmania donovani parasites with good safety and metabolic profiles. Notably, tambjamine 110 offered excellent potency and provided partial protection to leishmania-infected mice at 40 and/or 60 mg/kg/10 days of oral treatment. This study presents the first account of antileishmanial activity in the tambjamine family and paves the way for the generation of new oral antileishmanial drugs.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmania mexicana , Animales , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacocinética , Ratones , Leishmania donovani/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Femenino , Leishmaniasis/tratamiento farmacológico , Ratones Endogámicos BALB C
6.
Bioorg Med Chem Lett ; 23(2): 584-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23228469

RESUMEN

A novel cytotoxin 3,5-bis(4-chlorobenzylidene)-1-[4-{2-(4-morpholinyl)ethoxy}phenyl-carbonyl]-4-piperidone hydrochloride 2 demonstrated potent antimalarial properties with IC(50) values of 0.60 and 1.97 µM against the drug sensitive D6 strain and the C235 drug-resistant strain of Plasmodium falciparum. This compound concentrates in red blood cells, lowers glutathione concentrations in erythrocytes and permeates across CACO-2 cells. These data reveal 2 to be a promising lead compound in the quest for novel antimalarial agents.


Asunto(s)
Antimaláricos/síntesis química , Descubrimiento de Drogas , Morfolinas/síntesis química , Piperidonas/síntesis química , Antimaláricos/química , Antimaláricos/farmacología , Células CACO-2 , Resistencia a Medicamentos , Humanos , Concentración 50 Inhibidora , Morfolinas/química , Morfolinas/farmacología , Piperidonas/química , Piperidonas/farmacología , Plasmodium falciparum/efectos de los fármacos
7.
Bioorg Med Chem Lett ; 23(12): 3551-5, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23664871

RESUMEN

The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery.


Asunto(s)
Proteínas Portadoras/química , Enoil-ACP Reductasa (NADH)/química , Triclosán/análogos & derivados , Sitios de Unión , Proteínas Portadoras/metabolismo , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/metabolismo , Modelos Moleculares , Plasmodium falciparum/metabolismo , Toxoplasma/metabolismo , Triclosán/síntesis química , Triclosán/química , Triclosán/farmacología
8.
Bioorg Med Chem Lett ; 23(7): 2035-43, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23453069

RESUMEN

Triclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan's poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay. Some analogs display improved solubility, permeability and a comparable MIC50 value to that of triclosan. Modeling of these inhibitors revealed the same overall binding mode with the enzyme as triclosan, but the B-ring modifications have additional interactions with the strongly conserved Asn130.


Asunto(s)
Diseño de Fármacos , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Toxoplasma/enzimología , Triclosán/farmacología , Relación Dosis-Respuesta a Droga , Enoil-ACP Reductasa (NADH)/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triclosán/síntesis química , Triclosán/química
9.
Bioorg Med Chem ; 21(23): 7250-6, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24139941

RESUMEN

Drug resistance is a major challenge in antimalarial chemotherapy. In addition, a complete cure of malaria requires intervention at various stages in the development of the parasite within the host. There are only a few antimalarials that target the liver stage of the Plasmodium species which is an essential part of the life cycle of the malarial parasite. We report a series of antimalarial 3,5-bis(benzylidene)-4-piperidones and related N-acyl analogs 1-5, a number of which exhibit potent in vitro growth-inhibiting properties towards drug-sensitive D6 and drug-resistant C235 strains of Plasmodium falciparum as well as inhibiting the liver stage development of the malarial life cycle. The compounds 2b (IC50: 165 ng/mL), 3b (IC50: 186 ng/mL), 5c (IC50: 159 ng/mL) and 5d (IC50: 93.5 ng/mL) emerged as lead molecules that inhibit liver stage Plasmodium berghei and are significantly more potent than chloroquine (IC50: >2000 ng/mL) and mefloquine (IC50: >2000 ng/mL) in this screen. All the compounds that showed potent inhibitory activity against the P. berghei liver stage were nontoxic to human HepG2 liver cells (IC50: >2000 ng/mL). The compounds 5a and 5b exhibit comparable metabolic stability as chloroquine and mefloquine in human plasma and the most potent compound 5d demonstrated suitable permeability characteristics using the MDCK monolayer. These results emphasize the value of 3,5-bis(benzylidene)-4-piperidones as novel antimalarials for further drug development.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Hígado/parasitología , Malaria Falciparum/tratamiento farmacológico , Piperidonas/química , Piperidonas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/metabolismo , Resistencia a Medicamentos , Células Hep G2 , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria Falciparum/parasitología , Ratones , Piperidonas/metabolismo , Plasmodium berghei/efectos de los fármacos
10.
Antimicrob Agents Chemother ; 56(5): 2666-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22354304

RESUMEN

Toxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in the low nanomolar range against T. gondii in vitro and in vivo. Our lead compound, QQ-437, displays robust activity against the parasite and could be useful as a new scaffold for development of novel and improved inhibitors of T. gondii. Our genome-wide investigations reveal a specific mechanism of resistance to N-benzoyl-2-hydroxybenzamides mediated by adaptin-3ß, a large protein from the secretory protein complex. N-Benzoyl-2-hydroxybenzamide-resistant clones have alterations of their secretory pathway, which traffics proteins to micronemes, rhoptries, dense granules, and acidocalcisomes/plant-like vacuole (PLVs). N-Benzoyl-2-hydroxybenzamide treatment also alters micronemes, rhoptries, the contents of dense granules, and, most markedly, acidocalcisomes/PLVs. Furthermore, QQ-437 is active against chloroquine-resistant Plasmodium falciparum. Our studies reveal a novel class of compounds that disrupts a unique secretory pathway of T. gondii, with the potential to be used as scaffolds in the search for improved compounds to treat the devastating diseases caused by apicomplexan parasites.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Antiprotozoarios/farmacología , Benzamidas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antimaláricos/síntesis química , Antimaláricos/farmacología , Antiprotozoarios/síntesis química , Benzamidas/síntesis química , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Humanos , Concentración 50 Inhibidora , Orgánulos/efectos de los fármacos , Orgánulos/genética , Orgánulos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad Cuantitativa , Vías Secretoras/efectos de los fármacos , Vías Secretoras/fisiología , Toxoplasma/genética , Toxoplasma/metabolismo
11.
Eur J Drug Metab Pharmacokinet ; 37(1): 17-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22314893

RESUMEN

Ketotifen is known to exhibit antimalarial activity in mouse and monkey malaria models. However, the low plasma levels and short half life of the drug do not adequately explain its in vivo efficacy. We synthesized most of the known metabolites of ketotifen and evaluated their antimalarial activity and pharmacokinetics in mice. Norketotifen, the de-methylated metabolite of ketotifen, was a more potent antimalarial in vitro as compared to ketotifen, and exhibited equivalent activity in vivo against asexual blood and developing liver-stage parasites. After ketotifen dosing, norketotifen levels were much higher than ketotifen relative to the IC50s of the compounds against Plasmodium falciparum in vitro. The data support the notion that the antimalarial activity of ketotifen in mice is mediated through norketotifen.


Asunto(s)
Antimaláricos/farmacología , Cetotifen/análogos & derivados , Cetotifen/farmacología , Malaria/tratamiento farmacológico , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Femenino , Humanos , Concentración 50 Inhibidora , Cetotifen/administración & dosificación , Cetotifen/farmacocinética , Hígado/parasitología , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Profármacos
12.
Antimicrob Agents Chemother ; 55(7): 3363-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21518844

RESUMEN

The protozoan parasite responsible for malaria affects over 500 million people each year. Current antimalarials have experienced decreased efficacy due to the development of drug-resistant strains of Plasmodium spp., resulting in a critical need for the discovery of new antimalarials. Hemozoin, a crystalline by-product of heme detoxification that is necessary for parasite survival, serves as an important drug target. The quinoline antimalarials, including amodiaquine and chloroquine, act by inhibiting the formation of hemozoin. The formation of this crystal does not occur spontaneously, and recent evidence suggests crystallization occurs in the presence of neutral lipid particles located in the acidic digestive vacuole of the parasite. To mimic these conditions, the lipophilic detergent NP-40 has previously been shown to successfully mediate the formation of ß-hematin, synthetic hemozoin. Here, an NP-40 detergent-based assay was successfully adapted for use as a high-throughput screen to identify inhibitors of ß-hematin formation. The resulting assay exhibited a favorable Z' of 0.82 and maximal drift of less than 4%. The assay was used in a pilot screen of 38,400 diverse compounds at a screening concentration of 19.3 µM, resulting in the identification of 161 previously unreported ß-hematin inhibitors. Of these, 48 also exhibited ≥ 90% inhibition of parasitemia in a Plasmodium falciparum whole-cell assay at a screening concentration of 23 µM. Eight of these compounds were identified to have nanomolar 50% inhibitory concentration values near that of chloroquine in this assay.


Asunto(s)
Antimaláricos/farmacología , Hemoproteínas/metabolismo , Plasmodium falciparum/efectos de los fármacos , Amodiaquina/efectos adversos , Amodiaquina/química , Amodiaquina/farmacología , Animales , Antimaláricos/efectos adversos , Antimaláricos/química , Línea Celular , Cloroquina/efectos adversos , Cloroquina/química , Cloroquina/farmacología , Ratones , Quinolinas/efectos adversos , Quinolinas/química , Quinolinas/farmacología
13.
Eur J Drug Metab Pharmacokinet ; 36(3): 151-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21751074

RESUMEN

WR319691 has been shown to exhibit reasonable Plasmodium falciparum potency in vitro and exhibits reduced permeability across MDCK cell monolayers, which as part of our screening cascade led to further in vivo analysis. Single-dose pharmacokinetics was evaluated after an IV dose of 5 mg/kg in mice. Maximum bound and unbound brain levels of WR319691 were 97 and 0.05 ng/g versus approximately 1,600 and 3.2 ng/g for mefloquine. The half-life of WR319691 in plasma was approximately 13 h versus 23 h for mefloquine. The pharmacokinetics of several N-dealkylated metabolites was also evaluated. Five of six of these metabolites were detected and maximum total and free brain levels were all lower after an IV dose of 5 mg/kg WR319691 compared to mefloquine at the same dose. These data provide proof of concept that it is feasible to substantially lower the brain levels of a 4-position modified quinoline methanol in vivo without substantially decreasing potency against P. falciparum in vitro.


Asunto(s)
Antimaláricos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Quinolinas/metabolismo , Animales , Encéfalo/metabolismo , Hígado/metabolismo , Masculino , Ratones
14.
ACS Infect Dis ; 7(2): 506-517, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33529014

RESUMEN

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.


Asunto(s)
Antiprotozoarios , Leishmania major , Anfotericina B , Animales , Antiprotozoarios/farmacología , Aziridinas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C
15.
Methods Mol Biol ; 2081: 81-106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31721120

RESUMEN

Confirming the in vivo efficacy of potential antileishmanial compounds that display in vitro potency and good chemical characteristics is one of the most important steps in preclinical research drug discovery before human clinical trials begin. Here we describe the use of the in vivo bioluminescent monitoring of high and low inocula of luciferase-expressing Leishmania major (L. major) parasites in traditional and more innovative rodent models of in vivo cutaneous leishmaniasis (CL) drug discovery.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/parasitología , Mediciones Luminiscentes/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C
16.
ACS Med Chem Lett ; 11(3): 249-257, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184953

RESUMEN

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against Trypanosoma brucei, plus 31 new compounds, against a variety of protozoan parasites including Trypanosoma cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

17.
J Med Chem ; 63(11): 6179-6202, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32390431

RESUMEN

The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.


Asunto(s)
Acridonas/química , Antimaláricos/química , Acridonas/farmacocinética , Acridonas/farmacología , Acridonas/uso terapéutico , Administración Oral , Animales , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Semivida , Células Hep G2 , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Relación Estructura-Actividad
18.
Int J Parasitol Drugs Drug Resist ; 11: 129-138, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30922847

RESUMEN

OBJECTIVES: Drugs for Neglected Diseases initiative (DNDi) has identified three chemical lead series, the nitroimidazoles, benzoxaboroles and aminopyrazoles, as innovative treatments for visceral leishmaniasis. The leads discovered using phenotypic screening, were optimised following disease- and compound-specific criteria. Several leads of each series were progressed and preclinical drug candidates have been nominated. Here we evaluate the efficacy of the lead compounds of each of these three chemical classes in in vitro and in vivo models of cutaneous leishmaniasis. METHODS: The in vitro activity of fifty-five compounds was evaluated against the intracellular amastigotes of L. major, L. aethiopica, L. amazonensis, L. panamensis, L. mexicana and L. tropica. The drugs demonstrating potent activity (EC50 < 5 µM) against at least 4 of 6 species were subsequently evaluated in vivo in different L. major - BALB/c mouse models using a 5 or 10-day treatment with either the oral or topical formulations. Efficacy was expressed as lesion size (measured daily using callipers), parasite load (by quantitative PCR - DNA) and bioluminescence signal reduction relative to the untreated controls. RESULTS: The selected drug compounds (3 nitroimidazoles, 1 benzoxaborole and 3 aminopyrazoles) showed consistent and potent activity across a range of Leishmania species that are known to cause CL with EC50 values ranging from 0.29 to 18.3 µM. In all cases, this potent in vitro antileishmanial activity translated into high levels of efficacy with a linear dose-response against murine CL. When administered at 50 mg/kg/day, DNDI-0690 (nitroimidazole), DNDI-1047 (aminopyrazole) and DNDI-6148 (benzoxaborole) all resulted in a significant lesion size reduction (no visible nodule) and an approximate 2-log-fold reduction of the parasite load as measured by qPCR compared to the untreated control. CONCLUSIONS: The lead compounds DNDI-0690, DNDI-1047 and DNDI-6148 showed excellent activity across a range of Leishmania species in vitro and against L. major in mice. These compounds offer novel potential drugs for the treatment of CL.


Asunto(s)
Antiprotozoarios/uso terapéutico , Compuestos de Boro/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Pirazoles/uso terapéutico , Animales , Antiprotozoarios/química , Compuestos de Boro/química , Femenino , Concentración 50 Inhibidora , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nitroimidazoles/química , Carga de Parásitos , Pirazoles/química
19.
J Med Chem ; 62(7): 3475-3502, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30852885

RESUMEN

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.


Asunto(s)
Acridonas/química , Acridonas/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Descubrimiento de Drogas/métodos , Acridonas/uso terapéutico , Animales , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Malaria/tratamiento farmacológico , Ratones , Plasmodium/clasificación , Plasmodium/efectos de los fármacos , Especificidad de la Especie , Relación Estructura-Actividad
20.
ACS Infect Dis ; 4(4): 577-591, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29301082

RESUMEN

We recently reported the medicinal chemistry reoptimization of a known human tyrosine kinase inhibitor, lapatinib, against a variety of parasites responsible for numerous tropical diseases, including human African trypanosomiasis ( Trypanosoma brucei), Chagas disease ( T. cruzi), Leishmaniasis ( Leishmania spp.), and malaria ( Plasmodium falciparum). Herein, we report our continuing efforts to optimize this series against P. falciparum. Through the design of a library of compounds focused on reducing the lipophilicity and molecular weight, followed by an SAR exploration, we have identified NEU-1953 (40). This compound is a potent inhibitor of P. falciparum with an improved ADME profile over the previously reported compound, NEU-961 (3).


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Fenómenos Químicos , Plasmodium falciparum/efectos de los fármacos , Quinazolinas/síntesis química , Quinazolinas/farmacología , Antimaláricos/química , Humanos , Estructura Molecular , Plasmodium falciparum/crecimiento & desarrollo , Quinazolinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA