Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Pharm Biopharm ; : 114482, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278334

RESUMEN

Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9-10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30% (MN30), 25% (MN25), and 20% (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 hours, with MN20 exhibiting the highest deposition (55.94 ± 12.34%). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.

2.
J Appl Oral Sci ; 31: e20220375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995883

RESUMEN

OBJECTIVE: This study was conducted to assess the effect of hUCMSCs injection on the osseointegration of dental implant in diabetic rats via Runt-related Transcription Factor 2 (Runx2), Osterix (Osx), osteoblasts, and Bone Implant Contact (BIC). METHODOLOGY: The research design was a true experimental design using Rattus norvegicus Wistar strain. Rattus norvegicus were injected with streptozotocin to induce experimental diabetes mellitus. The right femur was drilled and loaded with titanium implant. Approximately 1 mm from proximal and distal implant site were injected with hUCMSCs. The control group was given only gelatin solvent injection. After 2 and 4 weeks of observation, the rats were sacrificed for further examination around implant site using immunohistochemistry staining (RUNX2 and Osterix expression), hematoxylin eosin staining, and bone implant contact area. Data analysis was done using ANOVA test. RESULTS: Data indicated a significant difference in Runx2 expression (p<0.001), osteoblasts (p<0.009), BIC value (p<0.000), and Osterix expression (p<0.002). In vivo injection of hUCMSCs successfully increased Runx2, osteoblasts, and BIC value significantly, while decreased Osterix expression, indicating an acceleration of the bone maturation process. CONCLUSION: The results proved hUCMSCs to accelerate and enhance implant osseointegration in diabetic rat models.


Asunto(s)
Implantes Dentales , Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , Ratas , Humanos , Animales , Oseointegración , Diabetes Mellitus Experimental/terapia , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ratas Wistar , Cordón Umbilical , Titanio/farmacología
3.
Sci Rep ; 12(1): 906, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042910

RESUMEN

Coenzyme Q10 (CoQ10) is a naturally produced organic molecule which acts as an antioxidant agent, including in skin anti-ageing, and plays a major role in the social determinants of health. However, its level in the body will decrease during ageing. Therefore, an external supplement is required to repair damaged skin, especially the skin dermis layer. This study aims to evaluate the use of a protransfersomal emulgel to improve the skin delivery and stability of CoQ10 which demonstrates low water solubility, poor permeability and instability. CoQ10 was initially dissolved in oleic acid at a weight ratio of 1:56. Protransfersome was then loaded with CoQ10 (Protransf-CoQ10) and prepared using a composition of L-α-Phosphatidylcholine and Tween 80 at a molar ratio of 85:15. The Protransf-CoQ10 was dispersed in an emulgel base consisting of Tween 80 and Span 80 to produce Protransf-CoQ10 emulgel. The in vivo studies of anti-aging activity and irritability were further evaluated by applying daily 200 mg of emulgels twice a day to a 4 cm2 section on the back of a UV-ray aging-induced male Balb/c mouse 20 min before irradiation. The results showed that Protransf-CoQ10 could transform into transfersomal vesicles with particle sizes of approximately 201.5 ± 6.1 nm and a zeta potential of - 11.26 ± 5.14 mV. The dispersion of Protransf-CoQ10 into emulgel base resulted in stable Protransf-CoQ10 Emulgel during 28 days of observation at low temperatures. Moreover, the in vivo study revealed that Protransf-CoQ10 Emulgel successfully increases the collagen density and number of fibroblast cells in UV radiation skin-aged induced-mice which reflects its potential for repairing the skin ageing process. In addition, the 24-h topical application of Protransf-CoQ10 Emulgel showed that no erythema or skin rash was observed during the study. In conclusion, loading CoQ10 into protransfersomal Emulgel successfully enhanced the stability and anti-ageing efficacy enabling its potential use as anti-ageing cosmetics.


Asunto(s)
Precursores de Proteínas , Factor de Crecimiento Transformador alfa
4.
Open Vet J ; 11(2): 330-336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307091

RESUMEN

Background: Varanus salvator is one of the reptiles being hunted by human beings for several purposes, including traditional medicine. The studies about reproductive biology aspects were limited. Aim: This study aimed to determine the morphology, histology, and histometry of V. salvator paryphasmata and hemibaculum based on Snout-Vent Length (SVL) as an indicator of sexual maturity. Methods: This study examined 18 pairs of hemipenis of V. salvator with SVL more and less than 40 cm in equal number. Paryphasmata and hemibaculum parts were observed visually and micro-sliced, then stained with Hematoxylin-Eosin (HE). The histological observation was conducted under a 40×, 100×, and 400× magnification of a light microscope. The histometry of the paryphasmata was examined using 13 Megapixels Coolpad and OptiLab Plus for microscopic pictures. The chondrocyte cell area was measured using the Optilab Plus and Image Raster three applications. Results: The sizes of glans of hemipenis, paryphasmata, and hemibaculum increased according to the increasing of SVL. The average paryphasmata row number, epidermis, and loose connective tissue thickness were not significantly different (p > 0.05). However, dense connective tissue was thicker (p < 0.05), which corresponds to SVL. Hemibaculum was composed of fibrous and hyaline cartilage characterized by chondrocyte cells. The SVL also affects (p < 0.05) the ossification of hyaline in hemipenis, while the chondrocyte cell area followed the equation -1.87E7 + 7.09E5* SVL. Conclusion: The SVL size of V. salvator affects the paryphasmata, hemibaculum, thickness of dense connective tissue of paryphasmata, and the area of chondrocyte cells.


Asunto(s)
Lagartos , Animales , Condrocitos , Humanos
5.
J. appl. oral sci ; J. appl. oral sci;31: e20220375, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430637

RESUMEN

Abstract Objective This study was conducted to assess the effect of hUCMSCs injection on the osseointegration of dental implant in diabetic rats via Runt-related Transcription Factor 2 (Runx2), Osterix (Osx), osteoblasts, and Bone Implant Contact (BIC). Methodology The research design was a true experimental design using Rattus norvegicus Wistar strain. Rattus norvegicus were injected with streptozotocin to induce experimental diabetes mellitus. The right femur was drilled and loaded with titanium implant. Approximately 1 mm from proximal and distal implant site were injected with hUCMSCs. The control group was given only gelatin solvent injection. After 2 and 4 weeks of observation, the rats were sacrificed for further examination around implant site using immunohistochemistry staining (RUNX2 and Osterix expression), hematoxylin eosin staining, and bone implant contact area. Data analysis was done using ANOVA test. Results Data indicated a significant difference in Runx2 expression (p<0.001), osteoblasts (p<0.009), BIC value (p<0.000), and Osterix expression (p<0.002). In vivo injection of hUCMSCs successfully increased Runx2, osteoblasts, and BIC value significantly, while decreased Osterix expression, indicating an acceleration of the bone maturation process. Conclusion The results proved hUCMSCs to accelerate and enhance implant osseointegration in diabetic rat models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA