Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964598

RESUMEN

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Investigación Biomédica , Programas Informáticos , Flujo de Trabajo
2.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38124683

RESUMEN

Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.


Asunto(s)
Sulfuro de Hidrógeno , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfuro de Hidrógeno/metabolismo , Fermentación , Sulfuros/metabolismo , Vino/análisis , Dióxido de Azufre/metabolismo , Azufre/metabolismo
3.
Food Microbiol ; 106: 104041, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690444

RESUMEN

Dimethyl sulfide (DMS) is a sulfur containing volatile that enhances general fruity aroma and imparts aromatic notes in wine. The most important precursor of DMS is S-methylmethionine (SMM), which is synthesized by grapes and can be metabolized by the yeast S. cerevisiae during wine fermentation. Precursor molecules left after fermentation are chemically converted to DMS during wine maturation, meaning that wine DMS levels are determined by the amount of remaining precursors at bottling. To elucidate SMM metabolism in yeast we performed quantitative trait locus (QTL) mapping using a population of 130 F2-segregants obtained from a cross between two wine yeast strains, and we detected one major QTL explaining almost 30% of trait variation. Within the QTL, gene YLL058W and SMM transporter gene MMP1 were found to influence SMM metabolism, from which MMP1 has the bigger impact. We identified and characterized a variant coding for a truncated transporter with superior SMM preserving attributes. A population analysis with 85 yeast strains from different origins revealed a significant association of the variant to flor strains and minor occurrence in cheese and wine strains. These results will help selecting and improving S. cerevisiae strains for the production of wine and other fermented foods containing DMS such as cheese or beer.


Asunto(s)
Vitamina U , Vino , Fermentación , Metaloproteinasa 1 de la Matriz/análisis , Metaloproteinasa 1 de la Matriz/metabolismo , Odorantes/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfuros , Vitamina U/análisis , Vitamina U/metabolismo , Vino/análisis
4.
FEMS Yeast Res ; 21(3)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33852000

RESUMEN

Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.


Asunto(s)
Fermentación , Saccharomyces/genética , Saccharomyces/metabolismo , Esteroles/metabolismo , Vino/análisis , Levaduras/genética , Levaduras/metabolismo , Anaerobiosis , Transporte Biológico/genética , Filogenia , Saccharomyces/clasificación , Esteroles/análisis , Levaduras/clasificación
5.
Mol Biol Evol ; 35(7): 1712-1727, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29746697

RESUMEN

The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Domesticación , Alimentos Fermentados/microbiología , Saccharomyces cerevisiae/genética , Variaciones en el Número de Copia de ADN , Fermentación , Transferencia de Gen Horizontal , Genoma Fúngico , Selección Genética
6.
BMC Genomics ; 19(1): 166, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490607

RESUMEN

BACKGROUND: The volatile metabolites produced by Saccharomyces cerevisiae during alcoholic fermentation, which are mainly esters, higher alcohols and organic acids, play a vital role in the quality and perception of fermented beverages, such as wine. Although the metabolic pathways and genes behind yeast fermentative aroma formation are well described, little is known about the genetic mechanisms underlying variations between strains in the production of these aroma compounds. To increase our knowledge about the links between genetic variation and volatile production, we performed quantitative trait locus (QTL) mapping using 130 F2-meiotic segregants from two S. cerevisiae wine strains. The segregants were individually genotyped by next-generation sequencing and separately phenotyped during wine fermentation. RESULTS: Using different QTL mapping strategies, we were able to identify 65 QTLs in the genome, including 55 that influence the formation of 30 volatile secondary metabolites, 14 with an effect on sugar consumption and central carbon metabolite production, and 7 influencing fermentation parameters. For ethyl lactate, ethyl octanoate and propanol formation, we discovered 2 interacting QTLs each. Within 9 of the detected regions, we validated the contribution of 13 genes in the observed phenotypic variation by reciprocal hemizygosity analysis. These genes are involved in nitrogen uptake and metabolism (AGP1, ALP1, ILV6, LEU9), central carbon metabolism (HXT3, MAE1), fatty acid synthesis (FAS1) and regulation (AGP2, IXR1, NRG1, RGS2, RGT1, SIR2) and explain variations in the production of characteristic sensorial esters (e.g., 2-phenylethyl acetate, 2-metyhlpropyl acetate and ethyl hexanoate), higher alcohols and fatty acids. CONCLUSIONS: The detection of QTLs and their interactions emphasizes the complexity of yeast fermentative aroma formation. The validation of underlying allelic variants increases knowledge about genetic variation impacting metabolic pathways that lead to the synthesis of sensorial important compounds. As a result, this work lays the foundation for tailoring S. cerevisiae strains with optimized volatile metabolite production for fermented beverages and other biotechnological applications.


Asunto(s)
Alcoholes/metabolismo , Mapeo Cromosómico , Fermentación , Sitios de Carácter Cuantitativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Sustitución de Aminoácidos , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Estudios de Asociación Genética , Genoma Fúngico , Genómica/métodos , Escala de Lod , Redes y Vías Metabólicas , Modelos Biológicos , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Metabolismo Secundario , Azúcares/metabolismo
7.
FEMS Yeast Res ; 17(6)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28817926

RESUMEN

Saccharomyces cerevisiae has been used to perform wine fermentation for several millennia due to its endurance and unmatched qualities. Nevertheless, at the moment of inoculation, wine yeasts must cope with specific stress factors that still challenge wine makers by slowing down or compromising the fermentation process. To better assess the role of genetic and environmental factors that govern multistress resistance during the wine fermentation lag phase, we used a factorial plan to characterise the individual and combined impact of relevant stress factors on eight S. cerevisiae and two non-S. cerevisiae wine yeast strains that are currently commercialised. The S. cerevisiae strains are very genetically diverse, belonging to the wine and flor groups, and frequently contain a previously described XVIVIII translocation that confers increased resistance to sulphites. We found that low temperature and osmotic stress substantially affected all strains, promoting considerably extended lag phases. SO2 addition had a partially temperature-dependent effect, whereas low phytosterol and thiamine concentrations impacted the lag phase in a strain-dependent manner. No major synergic effects of multistress were detected. The diversity of lag-phase durations and stress responses observed among wine strains offer new insights to better control this critical step of fermentation.


Asunto(s)
Fermentación , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Vino/microbiología , Frío , Presión Osmótica , Fitosteroles/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Sulfitos/metabolismo , Tiamina/metabolismo
8.
Mol Biol Evol ; 32(7): 1695-707, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25750179

RESUMEN

Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding oligopeptide transporters. We show that FOT genes confer a strong competitive advantage during grape must fermentation by increasing the number and diversity of oligopeptides that yeast can utilize as a source of nitrogen, thereby improving biomass formation, fermentation efficiency, and cell viability. Thus, the acquisition of FOT genes has favored yeast adaptation to the nitrogen-limited wine fermentation environment. This finding indicates that anthropic environments offer substantial ecological opportunity for evolutionary diversification through gene exchange between distant yeast species.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Vino/microbiología , Aminoácidos/metabolismo , Secuencia de Bases , Biomasa , Fermentación , Glutatión/metabolismo , Recombinación Homóloga/genética , Oligopéptidos/metabolismo , Fenotipo , Vitis/metabolismo
9.
Appl Environ Microbiol ; 82(10): 2909-2918, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969698

RESUMEN

UNLABELLED: Three wine estates (designated A, B, and C) were sampled in Sauternes, a typical appellation of the Bordeaux wine area producing sweet white wine. From those wine estates, 551 yeast strains were collected between 2012 and 2014, added to 102 older strains from 1992 to 2011 from wine estate C. All the strains were analyzed through 15 microsatellite markers, resulting in 503 unique Saccharomyces cerevisiae genotypes, revealing high genetic diversity and a low presence of commercial yeast starters. Population analysis performed using Fst genetic distance or ancestry profiles revealed that the two closest wine estates, B and C, which have juxtaposed vineyard plots and common seasonal staff, share more related isolates with each other than with wine estate A, indicating exchange between estates. The characterization of isolates collected 23 years ago at wine estate C in relation to recent isolates obtained at wine estate B revealed the long-term persistence of isolates. Last, during the 2014 harvest period, a temporal succession of ancestral subpopulations related to the different batches associated with the selective picking of noble rotted grapes was highlighted. IMPORTANCE: High genetic diversity of S. cerevisiae isolates from spontaneous fermentation on wine estates in the Sauternes appellation of Bordeaux was revealed. Only 7% of all Sauternes strains were considered genetically related to specific commercial strains. The long-term persistence (over 20 years) of S. cerevisiae profiles on a given wine estate is highlighted.


Asunto(s)
Biota , Microbiología Ambiental , Variación Genética , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/aislamiento & purificación , ADN de Hongos/genética , Genotipo , Repeticiones de Microsatélite , Tipificación Molecular , Técnicas de Tipificación Micológica , Saccharomyces cerevisiae/genética , Factores de Tiempo , Vino
10.
FEMS Yeast Res ; 16(6)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27527101

RESUMEN

Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation.


Asunto(s)
Genética Microbiana/métodos , Haploidia , Saccharomyces cerevisiae/genética , Genotipo , Fenotipo , Saccharomyces cerevisiae/fisiología
11.
FEMS Yeast Res ; 16(2): fow002, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26772797

RESUMEN

Considered as a sister species of Saccharomyces cerevisiae, S. uvarum is, to a lesser extent, an interesting species for fundamental and applied research studies. Despite its potential interest as a new gene pool for fermenting agents, the intraspecific molecular genetic diversity of this species is still poorly investigated. In this study, we report the use of nine microsatellite markers to describe S. uvarum genetic diversity and population structure among 108 isolates from various geographical and substrate origins (wine, cider and natural sources). Our combined microsatellite markers set allowed differentiating 89 genotypes. In contrast to S. cerevisiae genetic diversity, wild and human origin isolates were intertwined. A total of 75% of strains were proven to be homozygotes and estimated heterozygosity suggests a selfing rate above 0.95 for the different population tested here. From this point of view, the S. uvarum life cycle appears to be more closely related to S. paradoxus or S. cerevisiae of natural resources than S. cerevisiae wine isolates. Population structure could not be correlated to distinct geographic or technological origins, suggesting lower differentiation that may result from a large exchange between human and natural populations mediated by insects or human activities.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Saccharomyces/clasificación , Saccharomyces/genética , Microbiología de Alimentos , Plantas/microbiología
12.
FEMS Yeast Res ; 16(6)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27589939

RESUMEN

In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Galactosa/metabolismo , Redes y Vías Metabólicas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Prueba de Complementación Genética , Genotipo , Regulón , Saccharomyces/clasificación , Vino/microbiología
13.
Int J Mol Sci ; 17(11)2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27827954

RESUMEN

The physicochemical properties of the wine pigments catechyl-pyranomalvidin-3-O-glucoside (PA1) and guaiacyl-pyranomalvidin-3-O-glucoside (PA2) are extensively revisited using ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and quantum chemistry density functional theory (DFT) calculations. In mildly acidic aqueous solution, each cationic pigment undergoes regioselective deprotonation to form a single neutral quinonoid base and water addition appears negligible. Above pH = 4, both PA1 and PA2 become prone to aggregation, which is manifested by the slow build-up of broad absorption bands at longer wavelengths (λ ≥ 600 nm), followed in the case of PA2 by precipitation. Some phenolic copigments are able to inhibit aggregation of pyranoanthocyanins (PAs), although at large copigment/PA molar ratios. Thus, chlorogenic acid can dissociate PA1 aggregates while catechin is inactive. With PA2, both chlorogenic acid and catechin are able to prevent precipitation but not self-association. Calculations confirmed that the noncovalent dimerization of PAs is stronger with the neutral base than with the cation and also stronger than π-π stacking of PAs to chlorogenic acid (copigmentation). For each type of complex, the most stable conformation could be obtained. Finally, PA1 can also bind hard metal ions such as Al3+ and Fe3+ and the corresponding chelates are less prone to self-association.


Asunto(s)
Antocianinas/química , Quelantes del Hierro/química , Pigmentos Biológicos/química , Protones , Vino/análisis , Aluminio/química , Catequina/química , Precipitación Química , Ácido Clorogénico/química , Color , Dimerización , Concentración de Iones de Hidrógeno , Hierro/química , Conformación Molecular , Teoría Cuántica , Estereoisomerismo , Termodinámica
14.
Mol Ecol ; 24(21): 5412-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26248006

RESUMEN

The domestication of the wine yeast Saccharomyces cerevisiae is thought to be contemporary with the development and expansion of viticulture along the Mediterranean basin. Until now, the unavailability of wild lineages prevented the identification of the closest wild relatives of wine yeasts. Here, we enlarge the collection of natural lineages and employ whole-genome data of oak-associated wild isolates to study a balanced number of anthropic and natural S. cerevisiae strains. We identified industrial variants and new geographically delimited populations, including a novel Mediterranean oak population. This population is the closest relative of the wine lineage as shown by a weak population structure and further supported by genomewide population analyses. A coalescent model considering partial isolation with asymmetrical migration, mostly from the wild group into the Wine group, and population growth, was found to be best supported by the data. Importantly, divergence time estimates between the two populations agree with historical evidence for winemaking. We show that three horizontally transmitted regions, previously described to contain genes relevant to wine fermentation, are present in the Wine group but not in the Mediterranean oak group. This represents a major discontinuity between the two populations and is likely to denote a domestication fingerprint in wine yeasts. Taken together, these results indicate that Mediterranean oaks harbour the wild genetic stock of domesticated wine yeasts.


Asunto(s)
Evolución Molecular , Genética de Población , Genoma Fúngico , Saccharomyces cerevisiae/genética , Vino/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Europa (Continente) , Variación Genética , Región Mediterránea , Repeticiones de Microsatélite , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Quercus/microbiología , Análisis de Secuencia de ADN
15.
J Ind Microbiol Biotechnol ; 42(1): 85-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25387611

RESUMEN

The deliberate inoculation of yeast strains isolated from food matrices such as wine or bread, could allow the transfer of novel properties to beer. In this work, the feasibility of the use of baker's yeast strains as starters for craft beer production has been evaluated at laboratory and brewery scale. Nine out of 12 Saccharomyces cerevisiae strains isolated from artisanal sourdoughs metabolized 2 % maltose, glucose and trehalose and showed growth rates and cell populations higher than those of the brewer's strain Safbrew-S33. Analysis of allelic variation at 12 microsatellite loci clustered seven baker's strains and Safbrew-S33 in the main group of bread isolates. Chemical analyses of beers produced at a brewery scale showed significant differences among the beers produced with the baker's strain S38 or Safbrew-S33, while no significant differences were observed when S38 or the brewer's strain Safbrew-F2 was used for re-fermentation. The sensory profile of beers obtained with S38 or the brewer's yeasts did not show significant differences, thus suggesting that baker's strains of S. cerevisiae could represent a reservoir of biodiversity for the selection of starter strains for craft beer production.


Asunto(s)
Cerveza/microbiología , Pan/microbiología , Saccharomyces cerevisiae/metabolismo , Fenómenos Químicos , Comportamiento del Consumidor , Fermentación , Microbiología de Alimentos , Sitios Genéticos , Glucosa/metabolismo , Humanos , Maltosa/metabolismo , Repeticiones de Microsatélite , Técnicas de Tipificación Micológica , Saccharomyces cerevisiae/genética , Gusto , Trehalosa/metabolismo , Vino/microbiología
16.
Proc Natl Acad Sci U S A ; 109(33): 13398-403, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847440

RESUMEN

Saccharomyces cerevisiae is one of the most important model organisms and has been a valuable asset to human civilization. However, despite its extensive use in the last 9,000 y, the existence of a seasonal cycle outside human-made environments has not yet been described. We demonstrate the role of social wasps as vector and natural reservoir of S. cerevisiae during all seasons. We provide experimental evidence that queens of social wasps overwintering as adults (Vespa crabro and Polistes spp.) can harbor yeast cells from autumn to spring and transmit them to their progeny. This result is mirrored by field surveys of the genetic variability of natural strains of yeast. Microsatellites and sequences of a selected set of loci able to recapitulate the yeast strain's evolutionary history were used to compare 17 environmental wasp isolates with a collection of strains from grapes from the same region and more than 230 strains representing worldwide yeast variation. The wasp isolates fall into subclusters representing the overall ecological and industrial yeast diversity of their geographic origin. Our findings indicate that wasps are a key environmental niche for the evolution of natural S. cerevisiae populations, the dispersion of yeast cells in the environment, and the maintenance of their diversity. The close relatedness of several wasp isolates with grape and wine isolates reflects the crucial role of human activities on yeast population structure, through clonal expansion and selection of specific strains during the biotransformation of fermented foods, followed by dispersal mediated by insects and other animals.


Asunto(s)
Evolución Biológica , Fenómenos Ecológicos y Ambientales , Saccharomyces cerevisiae/genética , Conducta Social , Avispas/microbiología , Animales , Sistema Digestivo/microbiología , Genoma Fúngico/genética , Humanos , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética , Saccharomyces cerevisiae/aislamiento & purificación , Estaciones del Año , Avispas/genética
17.
BMC Genomics ; 15: 495, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24947828

RESUMEN

BACKGROUND: In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation. RESULTS: By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance. CONCLUSIONS: This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.


Asunto(s)
Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transaminasas/genética , Fermentación , Perfilación de la Expresión Génica , Genes Fúngicos , Datos de Secuencia Molecular , Factores de Elongación de Péptidos/genética , Fenotipo , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Estrés Fisiológico , Vino
18.
Sci Rep ; 14(1): 10124, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698114

RESUMEN

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Asunto(s)
Cobre , Fermentación , Sulfuro de Hidrógeno , Metalotioneína , Odorantes , Saccharomyces cerevisiae , Vitis , Vino , Vino/análisis , Cobre/metabolismo , Vitis/microbiología , Saccharomyces cerevisiae/metabolismo , Sulfuro de Hidrógeno/metabolismo , Odorantes/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfitos/farmacología , Control de Plagas/métodos
19.
BMC Genomics ; 14: 681, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24094006

RESUMEN

BACKGROUND: Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. RESULTS: Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8-16 translocation. CONCLUSIONS: This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear to be of particular importance, probably due to nitrogen starvation. Furthermore, we show that the well characterized 8-16 translocation located in SSU1, which is associated with sulfite resistance, can lead to a partial chromosomic amplification in the progeny of strains that carry it, greatly improving fermentation kinetics. This amplification has been detected among other wine yeasts.


Asunto(s)
Adaptación Fisiológica/genética , Fermentación/genética , Redes Reguladoras de Genes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/genética , Vino , Alelos , Segregación Cromosómica/genética , Cromosomas Fúngicos/genética , Análisis por Conglomerados , Hibridación Genómica Comparativa , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Ligamiento Genético , Sitios Genéticos , Inactivación Metabólica/genética , Mutación/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
20.
Food Microbiol ; 33(2): 228-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23200656

RESUMEN

Geraniol produced by grape is the main precursor of terpenols which play a key role in the floral aroma of white wines. We investigated the fate of geraniol during wine fermentation by Saccharomyces cerevisiae. The volatile compounds produced during fermentation of a medium enriched with geraniol were extracted by Stir-bar sorptive extraction and analysed by GC-MS. We were able to detect and quantify geranyl acetate but also citronellyl- and neryl-acetate. The presence of these compounds partly explains the disparition of geraniol. The amounts of terpenyl esters are strain dependant. We demonstrated both by gene overexpression and gene-deletion the involvement of ATF1 enzyme but not ATF2 in the acetylation of terpenols. The affinity of ATF1 enzyme for several terpenols and for isoamyl alcohol was compared. We also demonstrated that OYE2 is the enzyme involved in geraniol to citronellol reduction. Fermenting strain deleted from OYE2 gene produces far less citronellol than wild type strain. Moreover lab strain over-expressing OYE2 allows 87% geraniol to citronellol reduction in bioconversion experiment compared to about 50% conversion with control strain.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Fermentación , Eliminación de Gen , Monoterpenos/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis , Vino/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA