Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS Biol ; 16(9): e2005642, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30208022

RESUMEN

The phylum Apicomplexa comprises a group of obligate intracellular parasites that alternate between intracellular replicating stages and actively motile extracellular forms that move through tissue. Parasite cytosolic Ca2+ signalling activates motility, but how this is switched off after invasion is complete to allow for replication to begin is not understood. Here, we show that the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A catalytic subunit 1 (PKAc1) of Toxoplasma is responsible for suppression of Ca2+ signalling upon host cell invasion. We demonstrate that PKAc1 is sequestered to the parasite periphery by dual acylation of PKA regulatory subunit 1 (PKAr1). Upon genetic depletion of PKAc1 we show that newly invaded parasites exit host cells shortly thereafter, in a perforin-like protein 1 (PLP-1)-dependent fashion. Furthermore, we demonstrate that loss of PKAc1 prevents rapid down-regulation of cytosolic [Ca2+] levels shortly after invasion. We also provide evidence that loss of PKAc1 sensitises parasites to cyclic GMP (cGMP)-induced Ca2+ signalling, thus demonstrating a functional link between cAMP and these other signalling modalities. Together, this work provides a new paradigm in understanding how Toxoplasma and related apicomplexan parasites regulate infectivity.


Asunto(s)
Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Toxoplasma/enzimología , Acilación , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Fibroblastos/parasitología , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Ratones , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Subunidades de Proteína/metabolismo , Proteínas Protozoarias , Transducción de Señal , Toxoplasma/crecimiento & desarrollo
2.
J Biol Chem ; 294(14): 5720-5734, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723156

RESUMEN

The Plasmodium falciparum ATPase PfATP4 is the target of a diverse range of antimalarial compounds, including the clinical drug candidate cipargamin. PfATP4 was originally annotated as a Ca2+ transporter, but recent evidence suggests that it is a Na+ efflux pump, extruding Na+ in exchange for H+ Here we demonstrate that ATP4 proteins belong to a clade of P-type ATPases that are restricted to apicomplexans and their closest relatives. We employed a variety of genetic and physiological approaches to investigate the ATP4 protein of the apicomplexan Toxoplasma gondii, TgATP4. We show that TgATP4 is a plasma membrane protein. Knockdown of TgATP4 had no effect on resting pH or Ca2+ but rendered parasites unable to regulate their cytosolic Na+ concentration ([Na+]cyt). PfATP4 inhibitors caused an increase in [Na+]cyt and a cytosolic alkalinization in WT but not TgATP4 knockdown parasites. Parasites in which TgATP4 was knocked down or disrupted exhibited a growth defect, attributable to reduced viability of extracellular parasites. Parasites in which TgATP4 had been disrupted showed reduced virulence in mice. These results provide evidence for ATP4 proteins playing a key conserved role in Na+ regulation in apicomplexan parasites.


Asunto(s)
Membrana Celular/enzimología , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Animales , Membrana Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Sodio/metabolismo , Toxoplasma/genética , Toxoplasma/patogenicidad
3.
J Biol Chem ; 293(34): 13327-13337, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29986883

RESUMEN

The antimalarial activity of chemically diverse compounds, including the clinical candidate cipargamin, has been linked to the ATPase PfATP4 in the malaria-causing parasite Plasmodium falciparum The characterization of PfATP4 has been hampered by the inability thus far to achieve its functional expression in a heterologous system. Here, we optimized a membrane ATPase assay to probe the function of PfATP4 and its chemical sensitivity. We found that cipargamin inhibited the Na+-dependent ATPase activity present in P. falciparum membranes from WT parasites and that its potency was reduced in cipargamin-resistant PfATP4-mutant parasites. The cipargamin-sensitive fraction of membrane ATPase activity was inhibited by all 28 of the compounds in the "Malaria Box" shown previously to disrupt ion regulation in P. falciparum in a cipargamin-like manner. This is consistent with PfATP4 being the direct target of these compounds. Characterization of the cipargamin-sensitive ATPase activity yielded data consistent with PfATP4 being a Na+ transporter that is sensitive to physiologically relevant perturbations of pH, but not of [K+] or [Ca2+]. With an apparent Km for ATP of 0.2 mm and an apparent Km for Na+ of 16-17 mm, the protein is predicted to operate at below its half-maximal rate under normal physiological conditions, allowing the rate of Na+ efflux to increase in response to an increase in cytosolic [Na+]. In membranes from a cipargamin-resistant PfATP4-mutant line, the apparent Km for Na+ is slightly elevated. Our study provides new insights into the biochemical properties and chemical sensitivity of an important new antimalarial drug target.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antimaláricos/farmacología , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Proteínas de Transporte de Catión/antagonistas & inhibidores , Eritrocitos/enzimología , Malaria Falciparum/enzimología , Plasmodium falciparum/enzimología , Sodio/metabolismo , Adenosina Trifosfatasas/genética , Animales , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/genética , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Homeostasis , Humanos , Transporte Iónico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética
4.
PLoS Pathog ; 13(2): e1006180, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28178359

RESUMEN

In this study the 'Malaria Box' chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite's formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Transportadores de Ácidos Monocarboxílicos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Transporte Biológico/efectos de los fármacos , Cromatografía Liquida , Evaluación Preclínica de Medicamentos , Humanos , Malaria Falciparum/parasitología , Espectrometría de Masas , Plasmodium falciparum/metabolismo , Plasmodium falciparum/parasitología , Proteínas Protozoarias/metabolismo , Xenopus laevis
5.
J Biol Chem ; 292(18): 7662-7674, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28258212

RESUMEN

Toxoplasma gondii, like all apicomplexan parasites, uses Ca2+ signaling pathways to activate gliding motility to power tissue dissemination and host cell invasion and egress. A group of "plant-like" Ca2+-dependent protein kinases (CDPKs) transduces cytosolic Ca2+ flux into enzymatic activity, but how they function is poorly understood. To investigate how Ca2+ signaling activates egress through CDPKs, we performed a forward genetic screen to isolate gain-of-function mutants from an egress-deficient cdpk3 knockout strain. We recovered mutants that regained the ability to egress from host cells that harbored mutations in the gene Suppressor of Ca2+-dependent Egress 1 (SCE1). Global phosphoproteomic analysis showed that SCE1 deletion restored many Δcdpk3-dependent phosphorylation events to near wild-type levels. We also show that CDPK3-dependent SCE1 phosphorylation is required to relieve its suppressive activity to potentiate egress. In summary, our work has uncovered a novel component and suppressor of Ca2+-dependent cell egress during Toxoplasma lytic growth.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Proteínas de Unión al Calcio/genética , Fosforilación/fisiología , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-29555632

RESUMEN

For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.


Asunto(s)
Antimaláricos/farmacología , Transporte Biológico Activo/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Indoles/farmacología , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Compuestos de Espiro/farmacología , Eritrocitos/parasitología , Humanos , Fragilidad Osmótica/efectos de los fármacos
7.
PLoS Pathog ; 12(7): e1005725, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27441371

RESUMEN

Mutations in the Plasmodium falciparum 'chloroquine resistance transporter' (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite's digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite's hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite's survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite's hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite's sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/fisiología , Malaria Falciparum , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Amantadina/metabolismo , Amantadina/farmacología , Animales , Antimaláricos/metabolismo , Transporte Biológico/fisiología , Western Blotting , Cloroquina/metabolismo , Cloroquina/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Mutagénesis Sitio-Dirigida , Isoformas de Proteínas/metabolismo , Quinina/metabolismo , Quinina/farmacología , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 111(50): E5455-62, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453091

RESUMEN

Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Asunto(s)
Antimaláricos/farmacología , ATPasas Transportadoras de Calcio/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Malaria/tratamiento farmacológico , Modelos Moleculares , Plasmodium/efectos de los fármacos , Antimaláricos/farmacocinética , ATPasas Transportadoras de Calcio/genética , Senescencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Resistencia a Medicamentos/genética , Eritrocitos/efectos de los fármacos , Citometría de Flujo , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Isoquinolinas/farmacocinética , Estructura Molecular
9.
J Infect Dis ; 213(5): 800-10, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26503982

RESUMEN

BACKGROUND: It is becoming increasingly apparent that certain mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) alter the parasite's susceptibility to diverse compounds. Here we investigated the interaction of PfCRT with 3 tricyclic compounds that have been used to treat malaria (quinacrine [QC] and methylene blue [MB]) or to study P. falciparum (acridine orange [AO]). METHODS: We measured the antiplasmodial activities of QC, MB, and AO against chloroquine-resistant and chloroquine-sensitive P. falciparum and determined whether QC and AO affect the accumulation and activity of chloroquine in these parasites. We also assessed the ability of mutant (PfCRT(Dd2)) and wild-type (PfCRT(D10)) variants of the protein to transport QC, MB, and AO when expressed at the surface of Xenopus laevis oocytes. RESULTS: Chloroquine resistance-conferring isoforms of PfCRT reduced the susceptibility of the parasite to QC, MB, and AO. In chloroquine-resistant (but not chloroquine-sensitive) parasites, AO and QC increased the parasite's accumulation of, and susceptibility to, chloroquine. All 3 compounds were shown to bind to PfCRT(Dd2), and the transport of QC and MB via this protein was saturable and inhibited by the chloroquine resistance-reverser verapamil. CONCLUSIONS: Our findings reveal that the PfCRT(Dd2)-mediated transport of tricyclic antimalarials reduces the parasite's susceptibility to these drugs.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Azul de Metileno/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Quinacrina/metabolismo , Verapamilo/farmacología , Animales , Antimaláricos/farmacología , Transporte Biológico/efectos de los fármacos , Resistencia a Medicamentos , Regulación de la Expresión Génica/fisiología , Variación Genética , Oocitos/metabolismo , Xenopus laevis
10.
Mol Microbiol ; 97(2): 381-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25898991

RESUMEN

The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Cloroquina , Resistencia a Medicamentos , Eritrocitos/parasitología , Frecuencia de los Genes , Haplotipos , Humanos , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/metabolismo , Mutación , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
11.
Mol Microbiol ; 94(2): 327-39, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25145582

RESUMEN

The antimalarial spiroindolones disrupt Plasmodium falciparum Na(+) regulation and induce an alkalinization of the parasite cytosol. It has been proposed that they do so by inhibiting PfATP4, a parasite plasma membrane P-type ATPase postulated to export Na(+) and import H(+) equivalents. Here, we screened the 400 antiplasmodial compounds of the open access 'Malaria Box' for their effects on parasite ion regulation. Twenty eight compounds affected parasite Na(+) and pH regulation in a manner consistent with PfATP4 inhibition. Six of these, with chemically diverse structures, were selected for further analysis. All six showed reduced antiplasmodial activity against spiroindolone-resistant parasites carrying mutations in pfatp4. We exposed parasites to incrementally increasing concentrations of two of the six compounds and in both cases obtained resistant parasites with mutations in pfatp4. The finding that diverse chemotypes have an apparently similar mechanism of action indicates that PfATP4 may be a significant Achilles' heel for the parasite.


Asunto(s)
Antimaláricos/farmacología , Homeostasis , Hidrógeno/metabolismo , Iones/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Sodio/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Resistencia a Medicamentos , Concentración de Iones de Hidrógeno , Plasmodium falciparum/enzimología
12.
Biochem J ; 457(1): 1-18, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24325549

RESUMEN

As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.


Asunto(s)
Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Malaria/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum , Animales , Transporte Biológico , Humanos , Malaria/parasitología
13.
ACS Infect Dis ; 10(4): 1185-1200, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38499199

RESUMEN

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Iones/metabolismo , Antagonistas del Ácido Fólico/metabolismo , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón/metabolismo
14.
Int J Parasitol Drugs Drug Resist ; 25: 100536, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38663046

RESUMEN

Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit ß-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.

15.
Eur J Med Chem ; 276: 116677, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39024967

RESUMEN

Emerging resistance to current antimalarials is reducing their effectiveness and therefore there is a need to develop new antimalarial therapies. Toward this goal, high throughput screens against the P. falciparum asexual parasite identified the pyrazolopyridine 4-carboxamide scaffold. Structure-activity relationship analysis of this chemotype defined that the N1-tert-butyl group and aliphatic foliage in the 3- and 6-positions were necessary for activity, while the inclusion of a 7'-aza-benzomorpholine on the 4-carboxamide motif resulted in potent anti-parasitic activity and increased aqueous solubility. A previous report that resistance to the pyrazolopyridine class is associated with the ABCI3 transporter was confirmed, with pyrazolopyridine 4-carboxamides showing an increase in potency against parasites when the ABCI3 transporter was knocked down. The low metabolic stability intrinsic to the pyrazolopyridine scaffold and the slow rate by which the compounds kill asexual parasites resulted in poor performance in a P. berghei asexual blood stage mouse model. Lowering the risk of resistance and mitigating the metabolic stability and cytochrome P450 inhibition will be challenges in the future development of the pyrazolopyrimidine antimalarial class.

16.
J Med Chem ; 66(5): 3540-3565, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36812492

RESUMEN

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Homeostasis , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología
17.
Eur J Med Chem ; 236: 114324, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390711

RESUMEN

Malaria remains a prevalent infectious disease in developing countries. The first-line therapeutic options are based on combinations of fast-acting artemisinin derivatives and longer-acting synthetic drugs. However, the emergence of resistance to these first-line treatments represents a serious risk, and the discovery of new effective drugs is urgently required. For this reason, new antimalarial chemotypes with new mechanisms of action, and ideally with activity against multiple parasite stages, are needed. We report a new scaffold with dual-stage (blood and liver) antiplasmodial activity. Twenty-six spirooxadiazoline oxindoles were synthesized and screened against the erythrocytic stage of the human malaria parasite P. falciparum. The most active compounds were also tested against the liver-stage of the murine parasite P. berghei. Seven compounds emerged as dual-stage antimalarials, with IC50 values in the low micromolar range. Due to structural similarity with cipargamin, which is thought to inhibit blood-stage P. falciparum growth via inhibition of the Na + efflux pump PfATP4, we tested one of the most active compounds for anti-PfATP4 activity. Our results suggest that this target is not the primary target of spirooxadiazoline oxindoles and further studies are ongoing to identify the main mechanism of action of this scaffold.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Animales , Antimaláricos/química , Antagonistas del Ácido Fólico/farmacología , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Ratones , Oxindoles/farmacología , Plasmodium falciparum
18.
Nat Commun ; 13(1): 5746, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180431

RESUMEN

Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , ATPasas Transportadoras de Calcio , Eritrocitos/parasitología , Humanos , Indoles , Iones , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum , Sodio , Compuestos de Espiro
19.
J Biol Chem ; 285(24): 18615-26, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20332090

RESUMEN

The intraerythrocytic malaria parasite exerts tight control over its ionic composition. In this study, a combination of fluorescent ion indicators and (36)Cl(-) flux measurements was used to investigate the transport of Cl(-) and the Cl(-)-dependent transport of "H(+)-equivalents" in mature (trophozoite stage) parasites, isolated from their host erythrocytes. Removal of extracellular Cl(-), resulting in an outward [Cl(-)] gradient, gave rise to a cytosolic alkalinization (i.e. a net efflux of H(+)-equivalents). This was reversed on restoration of extracellular Cl(-). The flux of H(+)-equivalents was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and, when measured in ATP-depleted parasites, showed a pronounced dependence on the pH of the parasite cytosol; the flux was low at cytosolic pH values < 7.2 but increased steeply with cytosolic pH at values > 7.2. (36)Cl(-) influx measurements revealed the presence of a Cl(-) uptake mechanism with characteristics similar to those of the Cl(-)-dependent H(+)-equivalent flux. The intracellular concentration of Cl(-) in the parasite was estimated to be approximately 48 mm in situ. The data are consistent with the intraerythrocytic parasite having in its plasma membrane a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive transporter that, under physiological conditions, imports Cl(-) together with H(+)-equivalents, resulting in an intracellular Cl(-) concentration well above that which would occur if Cl(-) ions were distributed passively in accordance with the parasite's large, inwardly negative membrane potential.


Asunto(s)
Cloruros/química , Eritrocitos/parasitología , Plasmodium falciparum/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Citosol/metabolismo , Membrana Eritrocítica/parasitología , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Malaria/metabolismo , Malaria/parasitología , Microscopía Confocal/métodos , Protones , Espectrometría de Fluorescencia/métodos
20.
Mol Microbiol ; 77(4): 1039-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20598081

RESUMEN

Chloroquine-resistant malaria parasites (Plasmodium falciparum) show an increased leak of H(+) ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H(+), out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various 'chloroquine resistance reversers' induce an increased leak of H(+) from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild-type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound.


Asunto(s)
Antimaláricos/metabolismo , Transporte Biológico Activo , Resistencia a Medicamentos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo , Cloroquina/metabolismo , Hidrógeno/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Mutantes/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA