Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 20(34): e2401578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616738

RESUMEN

Photo enhanced oxygen evolution reaction has recently emerged as an advanced strategy with great application prospects for highly efficient energy conversion and storage. In the course of photo enhanced oxygen evolution reactions, the other works focus has predominantly centered on catalysts while inadvertently overlooking the pivotal role of photo. Consequently, this manuscript embarks upon a comprehensive review of recent advancements in photo-driven, aiming to illuminate this critical dimension. A detailed introduction to the photothermal effect, photoelectronic effect, photon-induced surface plasmon resonance, photo and heterojunction, photo-induced reversible geometric conversion, photo-induced energy barrier reduction, photo-induced chemical effect, photo-charging, and the synthesis of laser/photo-assisted catalysts, offering prospects for the development of each case is provided. A detailed introduction to the photothermal effect, photoelectronic effect, photon-induced surface plasmon resonance, photo and heterojunction, photo-induced reversible geometric conversion, photo-induced energy barrier reduction, photo-induced chemical effect, photo-charging, and the synthesis of laser/photo-assisted catalysts is provided. At the same time, the overpotential and Tafel slope of some catalysts mentioned above at 10 mA cm-2 is collected, and calculated the lifting efficiency of light on them, offering prospects for the development of each case.

2.
Langmuir ; 40(36): 19239-19250, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189153

RESUMEN

Supercapacitors with transition bimetallic oxides as pseudocapacitive materials have been of wide concern for their excellent energy storage performance. In this work, a simple coprecipitation method was used to synthesize the precursor, followed by calcination to prepare Ni-Cu bimetallic oxide materials. The structure, morphology and properties of the materials prepared by different precipitating agents and different calcination temperatures of NCO-H2C2O4 precursor were investigated. The optimum precipitant was determined to be H2C2O4, and Ni-Cu nanoparticles with regular lamellar microstructure were obtained at the calcination temperature of 400 °C. The nanostructure and morphology provide a large active channel for the rapid diffusion of electrolyte ions, and the specific capacitance of NCO-H2C2O4-400 electrode material can reach 740.31 F/g Cs at 1 A/g. The investigation of charge storage mechanism shows that the contribution rate of capacitance and diffusion control is about 37.9% and 67.2%, respectively. The electrochemical test results of the asymmetric supercapacitors (ASC) constructed with NCO-H2C2O4-400 and activated carbon show that the specific capacitance, energy density, and power density of the capacitor are 52.66 F/g, 16.45 Wh/kg, and 759.51 W/kg, respectively. Even after 5000 charge/discharge cycles at 5 A/g, it can still keep 90.57% of its initial capacity. This work not only provides competitive electrode materials for energy storage devices but also provides a feasible strategy for producing complex transition metal oxide materials with high capacitance performance.

3.
J Environ Sci (China) ; 43: 91-98, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27155413

RESUMEN

The radioactivity of uranium in radioactive coal bottom ash (CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride (HF) leaching, Siroquant (Rietveld) quantification, magnetic separation, and electron probe microanalysis (EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe-Mn oxide fractions was dominant (59.1% and 34.9%, respectively). The former was mainly incorporated into aluminosilicates, retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite (Fe3O4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment.


Asunto(s)
Ceniza del Carbón/química , Germanio , Monitoreo de Radiación , Contaminantes Radiactivos/análisis , Uranio/análisis , Microanálisis por Sonda Electrónica , Centrales Eléctricas
4.
ACS Appl Mater Interfaces ; 16(36): 47646-47661, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39188174

RESUMEN

The recycling of spent Li-ion batteries is urgent, and the effective recovery of valuable metals from spent cathode material is an economic and eco-friendly approach. In this study, Ni, Cu, Co, and Mn were extracted synchronously from spent LiNixCoyMn1-x-yO2 by chlorination and the complexation reaction of ammonium chloride at low temperatures. The kinetics of the chlorination process was investigated by nonisothermal thermal analysis to determine the rate equation of metal conversion, and the apparent activation energies were calculated to be 99.96 kJ·mol-1 for lithium and 146.70 kJ·mol-1 for nickel, cobalt, and manganese, respectively. The separation of valuable metals from polymetallic leaching solution and the regeneration of cathode materials were further investigated to promote the industrialization of the process. The recoveries of Ni, Co, Mn, and Li can reach 97.75, 99.99, 99.99, and 92.23%, respectively. The prepared LiNi0.8Co0.1Mn0.1O2 precursor is a multilayer spherical particle formed by stacking primary hexagonal nanosheets along the (010) crystal axis, the formation mechanism of which was discussed. The effect of temperature, time, and mixed lithium ratio on the performance of single crystal LiNi0.8Co0.1Mn0.1O2 cathode in the synthesis process was investigated to determine the optimum conditions. Compared with commercial materials, the prepared single crystal LiNi0.8Co0.1Mn0.1O2 cathode has a more regular crystal structure and higher initial discharge capacity (215.9 mAh·g-1 at 0.1 C).

5.
Waste Manag ; 153: 61-71, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055176

RESUMEN

The recycling of valuable metals from spent lithium-ion batteries (LIBs) has great significance for environmental protection and resource conservation. In this paper, a low-temperature clean chlorination roasting-water leaching process was proposed to simultaneously extract Li, Ni, Co and Mn from cathode material (NCM) of spent LIBs. The temperature range of chlorination roasting was determined by thermodynamic analysis to be 250-600 °C. The effect of some factors on the conversion of valuable metals in the process of chlorination roasting and water leaching was systematically studied. The results showed that more than 98 % of Li, Co, Ni and Mn could be extracted under optimized chlorination roasting and water leaching conditions. The chlorination roasting mechanism and phase transformation evolution was determined by means of thermodynamic analysis, TG-DTA, XRD, SEM and EDS. The extraction of valuable metals was realized by the reaction of the metal oxides produced by the decomposition of NCM with NH4Cl or its evolved HCl to form water-soluble metal chlorides or chlorinated metal-ammonium complexes. The chlorination technique using NH4Cl provided an effective and clean approach for the simultaneous extraction of Li, Co, Ni and Mn from spent LIBs.

6.
Nanoscale ; 14(44): 16376-16393, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36305266

RESUMEN

The electrochemical CO2 reduction reaction (ECRR) is a promising method to reduce excessive CO2 emissions and achieve a sustainable carbon cycle. Due to the high reaction kinetics and efficiency, copper-based catalysts have shown great application potential for preparing multicarbon (C2+) products. C2+ alcohols have high economic value and use-value, playing an essential role in modern industry. Therefore, we summarize the latest research progress of the ECRR to synthesize C2+ alcohols on Cu-based catalysts and discuss the state-of-the-art catalyst design strategies to improve CO2 reduction performance. Moreover, we analyzed in detail the specific reaction pathways for the conversion of CO2 to C2+ alcohols based on DFT calculations. Finally, we propose the problems and possible solutions for synthesizing C2+ alcohols with copper-based catalysts. We hope that this review can provide ideas for devising ECRR catalysts for C2+ alcohols.

7.
ACS Appl Mater Interfaces ; 14(9): 11359-11374, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191662

RESUMEN

A new environmentally friendly and economical recycling process for extracting metals from spent lithium-ion batteries (LIBs) using sulfuric acid and malonic acid as leaching agents is proposed. By applying Box-Behnken design (BBD) and response surface methodology (RSM) optimization techniques, the global optimal solution of the maximum leaching rate of metals in spent LIBs is realized. The results show that under the optimal conditions of 0.93 M H2SO4, 0.85 M malonic acid, and a liquid/solid ratio of 61 g·L-1, a temperature of 70 °C and 5 vol % of 30% H2O2, 99.79% Li, 99.46% Ni, 97.24% Co, and 96.88% Mn are recovered within 81 min. The error between the theoretical value and the actual value of the metal leaching rate predicted by the regression model is less than 1.0%. Additionally, the study of leaching kinetics reveals that the leaching process of Li, Ni, Co, and Mn in spent cathode materials was affected by the synergistic effect of interfacial mass transfer and solid product layer diffusion. Economic analysis reveals that evaluation index should be fully considered when formulating recovery processes for different metals. This process can reduce the environmental risks of heavy metal disposal and allow the reuse of metals recovered from spent LIBs.

8.
Nat Prod Res ; 34(9): 1337-1340, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30663377

RESUMEN

Phellodendri Chinensis Cortex is widely used in the clinic of traditional Chinese medicine. In order to enlarge the range of application, it is necessary to processed with honey, salt-water, and rice-wine, respectively. We hope to elucidate the connotation of processing, an UPLC-QqQ-MS method was used for determination and comparison the tissue distribution of alkaloids and triterpenes after oral administration water-extracts of crude and processed products. The results showed that the berberine, phellodendrine, magnoflorine, limonin, and obacunone in crude and processed products were distributed in all tissues, especially in the small intestine and stomach. In this study, we can provide a scientific basis for explaining the processing connotation of Phellodendri Chinensis Cortex processed with salt-water and rice-wine, respectively.


Asunto(s)
Alcaloides/farmacocinética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Phellodendron/química , Triterpenos/farmacocinética , Administración Oral , Alcaloides/análisis , Animales , Cromatografía Líquida de Alta Presión/métodos , Masculino , Ratas Sprague-Dawley , Distribución Tisular , Triterpenos/análisis , Agua/química , Vino
9.
J Hazard Mater ; 276: 346-52, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24922094

RESUMEN

A roast-leach method using CaCl2 and HNO3 to remove uranium and gross radioactivity in coal bottom ash was investigated. Heat treatment of the ash with 100% CaCl2 (900°C, 2h) significantly enhanced uranium leachability (>95%) compared with direct acid-leaching (22.6-25.5%). The removal efficiency of uranium and gross radioactivity increased steeply with increasing CaCl2 content, from 10% to 50%, and a HNO3 leaching time from 5 min to 1h, but remained nearly constant or decreased slightly with increasing CaCl2 dosage >50% or acid-leaching time >1h. The majority of the uranium (87.3%), gross α (92.9%) and gross ß (84.9%) were removed under the optimized roast-leach conditions (50% CaCl2, 1M HNO3 leaching for 1h). The mineralogical characteristics of roasted clinker indicated that molten CaCl2 promoted the incorporation of Ca into silica and silicates and resulted in its progressive susceptibility to acid attack. Uranium and other radionuclides, most likely present in the form of silicates or in association with miscellaneous silicates in the highest density fraction (>2.5g mL(-1)), were probably leached out as the result of the acid decomposition of newly formed "gelatinizing silicates".


Asunto(s)
Ceniza del Carbón , Ácido Nítrico/química , Radioisótopos/aislamiento & purificación , Uranio/aislamiento & purificación , Cloruro de Calcio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA