RESUMEN
PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.
Asunto(s)
Empalme del ARN , ARN , Adolescente , Adulto , Preescolar , Humanos , Mutación , ARN/genética , Empalme del ARN/genética , Análisis de Secuencia de ARN , Secuenciación del ExomaRESUMEN
The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.
Asunto(s)
Calpaína/deficiencia , Membrana Celular/enzimología , Músculo Esquelético/enzimología , Distrofia Muscular de Cinturas/enzimología , Distrofia Muscular Animal/enzimología , Animales , Proteínas Bacterianas/farmacología , Señalización del Calcio , Calpaína/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Modelos Animales de Enfermedad , Disferlina/deficiencia , Disferlina/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Saponinas/farmacología , Índice de Severidad de la Enfermedad , Estreptolisinas/farmacologíaRESUMEN
Dysferlin is proposed as a key mediator of calcium-dependent muscle membrane repair, although its precise role has remained elusive. Dysferlin interacts with a new membrane repair protein, mitsugumin 53 (MG53), an E3 ubiquitin ligase that shows rapid recruitment to injury sites. Using a novel ballistics assay in primary human myotubes, we show it is not full-length dysferlin recruited to sites of membrane injury but an injury-specific calpain-cleavage product, mini-dysferlinC72. Mini-dysferlinC72-rich vesicles are rapidly recruited to injury sites and fuse with plasma membrane compartments decorated by MG53 in a process coordinated by L-type calcium channels. Collective interplay between activated calpains, dysferlin, and L-type channels explains how muscle cells sense a membrane injury and mount a specialized response in the unique local environment of a membrane injury. Mini-dysferlinC72 and MG53 form an intricate lattice that intensely labels exposed phospholipids of injury sites, then infiltrates and stabilizes the membrane lesion during repair. Our results extend functional parallels between ferlins and synaptotagmins. Whereas otoferlin exists as long and short splice isoforms, dysferlin is subject to enzymatic cleavage releasing a synaptotagmin-like fragment with a specialized protein- or phospholipid-binding role for muscle membrane repair.
Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calpaína/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Distrofia Muscular de Cinturas/metabolismo , Sarcoglicanopatías/metabolismo , Anexina A1/metabolismo , Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/fisiología , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Disferlina , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/enzimología , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Distrofia Muscular de Cinturas/patología , Fosfolípidos/metabolismo , Cultivo Primario de Células , Sarcoglicanopatías/patología , Proteínas de Motivos TripartitosRESUMEN
Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.
Asunto(s)
Proteínas de la Membrana , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Disferlina/metabolismo , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Calpaína/genética , Proteómica , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/patología , Exones/genéticaRESUMEN
Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.
Asunto(s)
Debilidad Muscular/genética , Músculo Esquelético/patología , Miopatías Nemalínicas/tratamiento farmacológico , Miopatías Nemalínicas/genética , Tirosina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Fuerza de la Mano , Hipertrofia/genética , Hipertrofia/patología , Ratones , Ratones Transgénicos , Contracción Muscular/genética , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/patología , Mutación , Miopatías Nemalínicas/patología , FenotipoRESUMEN
Paediatric hyperCKaemia without weakness presents a clinical conundrum. Invasive investigations with low diagnostic yields, including muscle biopsy, may be considered unjustifiable. Improved access to genome-wide genetic testing has shifted first-line investigations towards genetic studies in neuromuscular disease. This research aims to provide an evidence-based diagnostic approach to paediatric hyperCKaemia without weakness, a current gap in the literature. We identified 47 individuals (10-months to 16-years-old; 34 males, 13 females) from 43 families presenting with hyperCKaemia on two or more occasions, without weakness, from The Children's Hospital at Westmead Neuromuscular Clinic Database. Clinical features, investigations and outcomes were analysed via retrospective chart review. Genetic testing has been performed in 34/43. Genetic variants explaining hyperCKaemia were identified in 25/34 (74%) using multiplex ligation-dependent probe amplification, massive parallel sequencing, single gene testing and exome sequencing. Pathogenic/likely pathogenic variants were identified in 19 neuromuscular disease genes and six metabolic myopathy genes. Individuals with metabolic diagnoses had higher peak creatine kinase levels that sometimes normalized. Conversely, creatine kinase levels remained persistently elevated those with neuromuscular diagnoses. In summary, a genetic cause is found in most paediatric patients with hyperCKaemia without weakness informing clinical management and counselling. Thus, we propose a diagnostic algorithm for this cohort.
Asunto(s)
Enfermedades Musculares , Enfermedades Neuromusculares , Niño , Creatina Quinasa , Femenino , Pruebas Genéticas , Humanos , Masculino , Debilidad Muscular/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Estudios RetrospectivosRESUMEN
The GTF2IRD1 gene is of principal interest to the study of Williams-Beuren syndrome (WBS). This neurodevelopmental disorder results from the hemizygous deletion of a region of chromosome 7q11.23 containing 28 genes including GTF2IRD1. WBS is thought to be caused by haploinsufficiency of certain dosage-sensitive genes within the deleted region, and the feature of supravalvular aortic stenosis (SVAS) has been attributed to reduced elastin caused by deletion of ELN. Human genetic mapping data have implicated two related genes GTF2IRD1 and GTF2I in the cause of some the key features of WBS, including craniofacial dysmorphology, hypersociability, and visuospatial deficits. Mice with mutations of the Gtf2ird1 allele show evidence of craniofacial abnormalities and behavioral changes. Here we show the existence of a negative autoregulatory mechanism that controls the level of GTF2IRD1 transcription via direct binding of the GTF2IRD1 protein to a highly conserved region of the GTF2IRD1 promoter containing an array of three binding sites. The affinity for this protein-DNA interaction is critically dependent upon multiple interactions between separate domains of the protein and at least two of the DNA binding sites. This autoregulatory mechanism leads to dosage compensation of GTF2IRD1 transcription in WBS patients. The GTF2IRD1 promoter represents the first established in vivo gene target of the GTF2IRD1 protein, and we use it to model its DNA interaction capabilities.
Asunto(s)
ADN/metabolismo , Síndrome de Williams/metabolismo , Alelos , Animales , Línea Celular , Biología Computacional , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Mutantes , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/genética , Transactivadores/metabolismo , Síndrome de Williams/genéticaRESUMEN
Stanniocalcin (STC), a secreted glycoprotein, was first studied in fish as a classical hormone with a role in regulating serum calcium levels. There are two closely related proteins in mammals, STC1 and STC2, with functions that are currently unclear. Both proteins are expressed in numerous mammalian tissues rather than being secreted from a specific endocrine gland. No phenotype has been detected yet in Stc1-null mice, and to investigate whether Stc2 could have compensated for the loss of Stc1, we have now generated Stc2(-/-) and Stc1(-/-) Stc2(-/-) mice. Although Stc1 is expressed in the ovary and lactating mouse mammary glands, like the Stc1(-/-) mice, the Stc1(-/-) Stc2(-/-) mice had no detected decrease in fertility, fecundity, or weight gain up until weaning. Serum calcium and phosphate levels were normal in Stc1(-/-) Stc2(-/-) mice, indicating it is unlikely that the mammalian stanniocalcins have a major physiological role in mineral homeostasis. Mice with Stc2 deleted were 10-15% larger and grew at a faster rate than wild-type mice from 4 wk onward, and the Stc1(-/-) Stc2(-/-) mice had a similar growth phenotype. This effect was not mediated through the GH/IGF-I axis. The results are consistent with STC2 being a negative regulator of postnatal growth.
Asunto(s)
Glicoproteínas/fisiología , Crecimiento y Desarrollo/genética , Animales , Animales Recién Nacidos , Peso Corporal/genética , Desarrollo Óseo/genética , Cruzamientos Genéticos , Femenino , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Actividad Motora/genética , Músculo Esquelético/fisiología , Tamaño de los Órganos/genética , Reproducción/genética , Caracteres SexualesRESUMEN
The gene GTF2IRD1 is localized within the critical region on chromosome 7 that is deleted in Williams syndrome patients. Genotype-phenotype comparisons of patients carrying variable deletions within this region have implicated GTF2IRD1 and a closely related homolog, GTF2I, as prime candidates for the causation of the principal symptoms of Williams syndrome. We have generated mice with an nls-LacZ knockin mutation of the Gtf2ird1 allele to study its functional role and examine its expression profile. In adults, expression is most prominent in neurons of the central and peripheral nervous system, the retina of the eye, the olfactory epithelium, the spiral ganglion of the cochlea, brown fat adipocytes and to a lesser degree myocytes of the heart and smooth muscle. During development, a dynamic pattern of expression is found predominantly in musculoskeletal tissues, the pituitary, craniofacial tissues, the eyes and tooth buds. Expression of Gtf2ird1 in these tissues correlates with the manifestation of some of the clinical features of Williams syndrome.
Asunto(s)
Proteínas Musculares/genética , Proteínas Nucleares/genética , Transactivadores/genética , Síndrome de Williams/genética , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/metabolismo , Feto/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Músculos/embriología , Músculos/metabolismo , Tejido Nervioso/embriología , Tejido Nervioso/metabolismo , Especificidad de Órganos , Organogénesis/genética , Fenotipo , Distribución TisularRESUMEN
Myoferlin and dysferlin are closely related members of the ferlin family of Ca2+-regulated vesicle fusion proteins. Dysferlin is proposed to play a role in Ca2+-triggered vesicle fusion during membrane repair. Myoferlin regulates endocytosis, recycling of growth factor receptors and adhesion proteins, and is linked to the metastatic potential of cancer cells. Our previous studies establish that dysferlin is cleaved by calpains during membrane injury, with the cleavage motif encoded by alternately-spliced exon 40a. Herein we describe the cleavage of myoferlin, yielding a membrane-associated dual C2 domain 'mini-myoferlin'. Myoferlin bears two enzymatic cleavage sites: a canonical cleavage site encoded by exon 38 within the C2DE domain; and a second cleavage site in the linker adjacent to C2DE, encoded by alternately-spliced exon 38a, homologous to dysferlin exon 40a. Both myoferlin cleavage sites, when introduced into dysferlin, can functionally substitute for exon 40a to confer Ca2+-triggered calpain cleavage in response to membrane injury. However, enzymatic cleavage of myoferlin is complex, showing both constitutive or Ca2+-enhanced cleavage in different cell lines, that is not solely dependent on calpains-1 or -2. The functional impact of myoferlin cleavage was explored through signalling protein phospho-protein arrays revealing specific activation of ERK1/2 by ectopic expression of cleavable myoferlin, but not an uncleavable isoform. In summary, we molecularly define two enzymatic cleavage sites within myoferlin and demonstrate 'mini-myoferlin' can be detected in human breast cancer tumour samples and cell lines. These data further illustrate that enzymatic cleavage of ferlins is an evolutionarily preserved mechanism to release functionally specialized mini-modules.
Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Disferlina/química , Disferlina/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteolisis , TransfecciónRESUMEN
AIMS: Mitsugumin-53 (MG53/TRIM72) is an E3-ubiquitin ligase that rapidly accumulates at sites of membrane injury and plays an important role in membrane repair of skeletal and cardiac muscle. MG53 has been implicated in cardiac ischaemia-reperfusion injury, and serum MG53 provides a biomarker of skeletal muscle injury in the mdx mouse model of Duchenne muscular dystrophy. We evaluated the clinical utility of MG53 as a biomarker of myocardial injury. METHODS AND RESULTS: We performed Langendorff ischaemia-reperfusion injury on wild-type and dysferlin-null murine hearts, using dysferlin deficiency to effectively model more severe outcomes from cardiac ischaemia-reperfusion injury. MG53 released into the coronary effluent correlated strongly and significantly (r = 0.79-0.85, P < 0.0001) with functional impairment after ischaemic injury. We initiated a clinical trial in paediatric patients undergoing corrective heart surgery, the first study of MG53 release with myocardial injury in humans. Unexpectedly, we reveal although MG53 is robustly expressed in rat and mouse hearts, MG53 is scant to absent in human, ovine, or porcine hearts. Absence of MG53 in 11 human heart specimens was confirmed using three separate antibodies to MG53, each subject to epitope mapping and confirmed immunospecificity using MG53-deficient muscle cells. CONCLUSION: MG53 is an effective biomarker of myocardial injury and dysfunction in murine hearts. However, MG53 is not expressed in human heart and therefore does not hold utility as a clinical biomarker of myocardial injury. Although cardioprotective roles for endogenous myocardial MG53 cannot be extrapolated from rodents to humans, potential therapeutic application of recombinant MG53 for myocardial membrane injury prevails.
Asunto(s)
Biomarcadores/análisis , Proteínas Portadoras/genética , Proteínas Musculares/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Corazón/fisiopatología , Humanos , Masculino , Proteínas de la Membrana , Ratones , Músculo Esquelético/metabolismo , Daño por Reperfusión Miocárdica/diagnóstico , Ratas , Ovinos , Porcinos , Proteínas de Motivos TripartitosRESUMEN
Tropomyosin (Tm) in non-muscle cells is involved in stabilisation of the actin cytoskeleton. Some of the 40 isoforms described are found in the brain and exhibit spatial and developmental regulation. Non-muscle isoforms from the gamma Tm gene can be subdivided into three subsets of isoforms differing at the C-terminus, all of which are found throughout the brain and some of which are implicated in different aspects of neuronal function. We have approached the role of different gamma isoforms in neuronal function by knocking out a subset of isoforms. We show here that we can successfully knock out all isoforms containing the brain-specific 9c C-terminus. Brains from these mice did not show any gross abnormalities. Western analysis of adult brains showed that 9c isoforms are reduced in +/- and absent in -/- mice but that a compensation by 9a-containing isoforms resulted in total levels of gamma products remaining the same. No other Tm isoforms were altered. We have therefore specifically altered the Tm composition in these neurons which allows us to study the effects of these changes on the cytoskeleton of neurons during growth, differentiation and maturation and give us insights into the normal roles of these isoforms.
Asunto(s)
Actinas/genética , Empalme Alternativo , Exones/genética , Eliminación de Secuencia , Tropomiosina/genética , Actinas/química , Animales , Encéfalo/citología , Química Encefálica , Células Cultivadas , Ratones , Ratones Noqueados , Células Madre/citología , Células Madre/fisiología , Tropomiosina/química , Tropomiosina/deficienciaRESUMEN
The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.
Asunto(s)
Proteínas de la Membrana/fisiología , Distrofias Musculares/patología , Estrés Oxidativo , Compuestos de Sulfhidrilo/química , Animales , Disferlina , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Distrofias Musculares/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismoRESUMEN
The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, ßTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80-100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function.
RESUMEN
Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.
Asunto(s)
Anexina A1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Adolescente , Adulto , Anciano , Biopsia , Western Blotting , Niño , Preescolar , Citoplasma/metabolismo , ADN/genética , Disferlina , Humanos , Inmunohistoquímica , Lactante , Microscopía Confocal , Persona de Mediana Edad , Estimulación Física , Sarcolema/metabolismo , Proteínas de Motivos Tripartitos , Regulación hacia Arriba , Adulto JovenRESUMEN
Previous studies have shown that the overexpression of tropomyosins leads to isoform-specific alterations in the morphology of subcellular compartments in neuronal cells. Here we have examined the role of the most abundant set of isoforms from the gamma-Tm gene by knocking out the alternatively spliced C-terminal exon 9d. Despite the widespread location of exon 9d-containing isoforms, mice were healthy and viable. Compensation by products containing the C-terminal exon 9c was seen in the adult brain. While neurons from these mice show a mild phenotype at one day in culture, neurons revealed a significant morphological alteration with an increase in the branching of dendrites and axons after four days in culture. Our data suggest that this effect is mediated via altered stability of actin filaments in the growth cones. We conclude that exon 9d-containing isoforms are not essential for survival of neuronal cells and that isoform choice from the gamma-Tm gene is flexible in the brain. Although functional redundancy does not exist between tropomyosin genes, these results suggest that significant redundancy exists between products from the same gene.
Asunto(s)
Neurogénesis/fisiología , Tropomiosina/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Axones/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomiosina/genéticaRESUMEN
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.
Asunto(s)
Citoesqueleto/metabolismo , Sarcómeros/metabolismo , Actinas/metabolismo , Animales , Western Blotting , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Miocardio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismoRESUMEN
More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.
Asunto(s)
Actinina/genética , Músculo Esquelético/metabolismo , Actinina/fisiología , Alelos , Animales , Pueblo Asiatico , Variación Genética , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Modelos Animales , Modelos Genéticos , Resistencia Física/genética , Polimorfismo Genético , Selección Genética , Población BlancaRESUMEN
BACKGROUND: Gene transfer of the P140K mutant of O6-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSC) provides a mechanism for drug resistance and the selective expansion of gene-modified cells in vivo. Possible clinical applications for this strategy include chemoprotection to allow dose escalation of alkylating chemotherapy, or combining MGMT(P140K) expression with a therapeutic gene in the treatment of genetic diseases. Our aim is to use MGMT(P140K)-driven in vivo selection to develop allogeneic micro-transplantation protocols that rely on post-engraftment selection to overcome the requirement for highly toxic pre-transplant conditioning, and to establish and maintain predictable levels of donor/recipient chimerism. METHODS: Using stably transfected murine embryonic stem (ES) cells, we have generated a C57BL/6 transgenic mouse line with expression of MGMT(P140K) within the hematopoietic compartment for use as a standard source of donor HSC in such models. Functional characterisation of transgene expression was carried out in chemotherapy-treated transgenic mice and in allogeneic recipients of transgenic HSC. RESULTS: Expression of the transgene provided chemoprotection and allowed in vivo selection of MGMT(P140K)-expressing cells in transgenic mice after exposure to O6-benzylguanine (BG) and N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU). In an allogeneic transplant experiment in which transgenic HSC were engrafted into 129 strain recipients following low intensity conditioning (Busulfan, anti-CD8, anti-CD40Ligand), MGMT(P140K)-expressing cells could be selected using chemotherapy. CONCLUSIONS: This MGMT(P140K) transgenic mouse line provides a useful source of drug-selectable donor cells for the development of non-myeloablative allogeneic transplant models in which variation in transplant conditioning elements can be investigated independently of gene transfer efficiency.
Asunto(s)
Células Madre Hematopoyéticas/enzimología , O(6)-Metilguanina-ADN Metiltransferasa/genética , Mutación Puntual , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Carmustina/farmacología , ADN/genética , Resistencia a Medicamentos/genética , Femenino , Expresión Génica , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Transfección , Acondicionamiento Pretrasplante , Trasplante HomólogoRESUMEN
Lymphotoxin (LT)alpha in combination with LTbeta forms membrane-bound heterotrimeric complexes with a crucial function in lymph node (LN) organogenesis and correct morphogenesis of secondary lymphoid tissue. To study the role of membrane LT (mLT) in lymphoid tissue organogenesis we generated an LTbeta-deficient mouse strain on a pure genetic C57BL/6 background (B6.LTbeta-/-) and compared it to a unique series of LTalpha-, TNF- and TNF/LTalpha-gene-targeted mice on an identical genetic background (B6.LTalpha-/-, B6.TNF-/- and B6 TNF/LTalpha-/-). B6.LTbeta-/- mice lacked peripheral LN with the exception of mesenteric LN, and displayed a disturbed micro-architecture of the spleen, although less profoundly than LTalpha- or TNF/LTalpha-deficient mice. Radiation bone marrow chimeras (B6.WT-->B6.LTbeta-/- developed Peyer's patch (PP)-like lymphoid aggregates in the intestinal wall indicating a possible role for soluble LTalpha(3) in the formation of the PP anlage. After infection with Leishmania major, B6.LTbeta-/- mice developed a fatal disseminating leishmaniasis resulting in death after 8 to 14 weeks, despite the natural resistance of the C57BL/6 genetic background (B6.WT) mice to the parasite. Both, the cellular and the humoral anti-L. major immune responses were delayed and ineffective. However, the expression pattern of the key cytokines IFN-gamma and IL-12 were comparable in B6.WT and B6.LTbeta-/- mice. Infection of radiation bone marrow chimeras showed that it is the LTbeta-dependent presence of lymphoid tissue and not the expression of mLT itself that renders mice resistant to leishmaniasis.