Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Sci Food Agric ; 98(1): 96-103, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28543537

RESUMEN

BACKGROUND: Table olives have been a component of the Mediterranean diet for centuries, with the trend for their consumption currently increasing worldwide. They are rich in bioactive molecules with nutritional, antioxidant, anti-inflammatory or hormone-like properties. In the present study, the concentrations of phenolics, triterpenic acids, carotenoids and vitamins, as well as fatty acid profiles and antioxidant activity, were analyzed in the edible portion of black table olives (Olea europea L.) from Italian (Cellina di Nardò and Leccino) and Greek (Kalamàta and Conservolea) cultivars fermented with selected autochthonous starters and in the corresponding monovarietal olive oils. RESULTS: On a fresh weight basis, Cellina di Nardò and Leccino table olives showed the highest total phenolic content. No significant differences were found with respect to the levels of total triterpenic (maslinic and oleanolic) acids and vitamin E among cultivars. All table olives were characterized by high amounts of oleic, linoleic and palmitic acids. Oils were richer in lipophilic antioxidants (carotenoids and tocochromanols) than table olives, which, instead, showed a higher content of polyphenols and triterpenic acids than oils. CONCLUSION: The present study demonstrates that fermented table olives are an excellent natural source of unsaturated fatty acids, as well as being nutritionally important health-promoting bioactive compounds. © 2017 Society of Chemical Industry.


Asunto(s)
Frutas/química , Lactobacillus plantarum/metabolismo , Olea/microbiología , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Fermentación , Frutas/metabolismo , Frutas/microbiología , Grecia , Italia , Olea/química , Olea/metabolismo , Polifenoles/análisis , Polifenoles/metabolismo , Vitamina E/análisis , Vitamina E/metabolismo
2.
Compr Rev Food Sci Food Saf ; 17(6): 1540-1560, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33350145

RESUMEN

Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.

3.
Int J Mol Sci ; 15(4): 6725-40, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24756094

RESUMEN

Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, ß-carotene, ß-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.


Asunto(s)
Dióxido de Carbono/química , Carotenoides/aislamiento & purificación , Cucurbita/metabolismo , Cromatografía con Fluido Supercrítico , Presión , Solventes/química , Temperatura
4.
Food Funct ; 14(22): 10083-10096, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37870074

RESUMEN

Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.


Asunto(s)
Cucurbita , Daucus carota , Animales , Ratones , Lipopolisacáridos/farmacología , Dióxido de Carbono/farmacología , Medios de Cultivo Condicionados/farmacología , Especies Reactivas de Oxígeno , Células MDA-MB-231 , Extractos Vegetales/farmacología , Macrófagos , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Carotenoides/farmacología , Células RAW 264.7
5.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176862

RESUMEN

Growing conditions and seasonal fluctuations are critical factors affecting fruit and vegetable nutritional quality. The effects of two partially overlapping cropping seasons, early (ECS; January-May) and full (FCS; March-July), on the main carpometric traits and bioactive components of different watermelon fruits were investigated in the open field. Four watermelon genotypes, comprising of three commercial cultivars 'Crimson Sweet', 'Dumara', 'Giza', and the novel hybrid 'P503 F1', were compared. The carpometric traits varied significantly between genotypes. Soluble solids and yield were higher under FCS than ECS. The variation affecting colour indexes between the two growing seasons exhibited a genotype-dependent trend. The antioxidant components and radical scavenging activity of watermelon fruits were also significantly affected by differences in received solar energy and temperature fluctuations during the trial period. The average citrulline, total phenolics and flavonoid contents were 93%, 71% and 40% higher in FCS than in ECS. A genotype-dependent variation trend was also observed for lycopene and total vitamin C between cropping seasons. The hydrophilic and lipophilic radical scavenging activities of the pulp of ripe watermelon fruits of the different genotypes investigated varied between 243.16 and 425.31 µmol Trolox Equivalent (TE) of 100 g-1 of fresh weight (fw) and from 232.71 to 341.67 µmol TE of 100 g-1 fw in FCS and ECS, respectively. Our results, although preliminary, show that the functional quality of watermelon fruits is drastically altered depending on the environmental conditions that characterize the ECS and LCS.

6.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326134

RESUMEN

This study aims to describe and compare the distribution of bioactive compounds, the fatty acids profiles, and the TEAC hydrophilic and lipophilic antioxidant activities in different fruit fractions (pulp, peel, and kernel) of two mango cultivars (Tommy Atkins and Keitt). All fractions are sources of health-promoting bioactive compounds. Regardless of cultivars, pulp had the highest content of phytosterols (~150 mg/100 g dw), peels ranked first for pentaciclic triterpenes (from 14.2 to 17.7 mg/100 g dw), tocopherols, carotenoids, and chlorophylls, and kernels for phenolic compounds (from 421.6 to 1464.8 mg/100 g dw), flavonoids, condensed tannins, as well as hydrophilic and lipophilic antioxidant activities. Differences between the two cultivars were evidenced for ascorbic acid, which showed the highest levels in the peels and kernels of Keitt and Tommy Atkins fruits, respectively. Similarly, the concentration of dehydroascorbic acid was higher in the pulp of Tommy Atkins than Keitt. The highest percentage of saturated fatty acids was observed in pulp (~42%) and kernels (~50%), monounsaturated fatty acids in kernels (up to 41%), and polyunsaturated fatty acids in peels (up to 52%). Our results add information to the current knowledge on nutraceuticals' distribution in different fractions of mango fruit, supporting its consumption as a healthy fruit and suggesting the great potential value of peels and kernels as sources of novel ingredients. Indeed, mango by-products generated during agronomic-to-industrial processing not only causes a significant environmental impact, but economic losses too. In this scenario, boosting research on conventional recovery methods offers eco-friendly solutions. However, green, novel biorefinery technologies may offer eco-friendly and profitable solutions, allowing the recovery of several more profitable by-products, sustaining their continuous growth since many bioactive compounds can be recovered from mango by-products that are potentially useful in the design of innovative nutraceutical, cosmeceutical, and pharmaceutical formulations.

7.
Antioxidants (Basel) ; 11(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35740047

RESUMEN

Carotenoids may have different effects on cancer and its progression. The safety of carotenoid supplements was evaluated in vitro on human non-small cell lung cancer (NSCLC) adenocarcinoma A549 cells by the administration of three different oleoresins containing lycopene and other lipophilic phytochemicals, such as tocochromanols. The oleoresins, obtained by the supercritical CO2 green extraction technology from watermelon (Lyc W), gac(Lyc G) and tomato (Lyc T) and chlatrated in α-cyclodextrins, were tested in comparison to synthetic lycopene (Lyc S), by cell cycle, Annexin V-FITC/PI, clonogenic test, Mytosox, intracellular ROS, Western Blot for NF-kB and RT-PCR and ELISA for IL-8. The extracts administered at the same lycopene concentration (10 µM) showed conflicting behaviors: Lyc W, with the highest lycopene/tocochromanols ratio, significantly increased cell apoptosis, mitochondrial stress, intracellular ROS, NF-kB and IL-8 expression and significantly decreased cell proliferation, whereas Lyc G and Lyc T significantly increased only cell proliferation. Lyc S treatment was ineffective. The highest amount of lycopene in Lyc W was able to counteract and revert the cell survival effect of tocochromanols supporting the importance of evaluating the lycopene bio-availability and the real effect of antioxidant tocochromanols' supplementation which may not only have no anticancer benefits but may even increase cancer aggressivity.

8.
Front Nutr ; 9: 844162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571925

RESUMEN

The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with ß-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.

9.
J Integr Plant Biol ; 53(11): 858-68, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21951961

RESUMEN

Oleosin, caleosin and steroleosin are normally expressed in developing seed cells and are targeted to oil bodies. In the present work, the cDNA of each gene tagged with fluorescent proteins was transiently expressed into tobacco protoplasts and the fluorescent patterns observed by confocal laser scanning microscopy. Our results indicated clear differences in the endocellular localization of the three proteins. Oleosin and caleosin both share a common structure consisting of a central hydrophobic domain flanked by two hydrophilic domains and were correctly targeted to lipid droplets (LD), whereas steroleosin, characterized by an N-terminal oil body anchoring domain, was mainly retained in the endoplasmic reticulum (ER). Protoplast fractionation on sucrose gradients indicated that both oleosin and caleosin-green fluorescent protein (GFP) peaked at different fractions than where steroleosin-GFP or the ER marker binding immunoglobulin protein (BiP), were recovered. Chemical analysis confirmed the presence of triacylglycerols in one of the fractions where oleosin-GFP was recovered. Finally, only oleosin- and caleosin-GFP were able to reconstitute artificial oil bodies in the presence of triacylglycerols and phospholipids. Taken together, our results pointed out for the first time that leaf LDs can be separated by the ER and both oleosin or caleosin are selectively targeted due to the existence of selective mechanisms controlling protein association with these organelles.


Asunto(s)
Cuerpos de Inclusión/metabolismo , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Semillas/metabolismo , Transporte de Proteínas/fisiología
10.
Microorganisms ; 9(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204263

RESUMEN

We aimed to develop an innovative synbiotic formulation for use in reducing dysbiosis, uremic toxins (e.g., p-cresol and indoxyl sulfate), and, consequently, the pathognomonic features of patients with chronic kidney disease (CKD). Twenty-five probiotic strains, belonging to lactobacilli and Bifidobacterium, were tested for their ability to grow in co-culture with different vegetable (pomegranate, tomato, and grapes) sources of antioxidants and prebiotics (inulin, fructo-oligosaccharides, and ß-glucans). Probiotics were selected based on the acidification rates and viable cell counts. Inulin and fructo-oligosaccharides reported the best prebiotic activity, while a pomegranate seed extract was initially chosen as antioxidant source. The investigation was also conducted in fecal batches from healthy and CKD subjects, on which metabolomic analyses (profiling volatile organic compounds and total free amino acids) were conducted. Two out of twenty-five probiotics were finally selected. After the stability tests, the selective innovative synbiotic formulation (named NatuREN G) comprised Bifidobacterium animalis BLC1, Lacticaseibacillus casei LC4P1, fructo-oligosaccharides, inulin, quercetin, resveratrol, and proanthocyanidins. Finally, NatuREN G was evaluated on fecal batches collected from CKD in which modified the viable cell densities of some cultivable bacterial patterns, increased the concentration of acetic acid and decane, while reduced the concentration of nonanoic acid, dimethyl trisulfide, and indoxyl sulfate.

11.
Plants (Basel) ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834884

RESUMEN

The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods.

12.
Metabolites ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34564382

RESUMEN

Glycans play a fundamental role in several biological processes, such as cell-cell adhesion, signaling, and recognition. Similarly, abnormal glycosylation is involved in many pathological processes, among which include tumor growth and progression. Several highly glycosylated proteins found in blood are currently used in clinical practice as cancer biomarkers (e.g., CA125, PSA, and CA19-9). The development of novel non-invasive diagnostic procedures would greatly simplify the screening and discovery of pathologies at an early stage, thus also allowing for simpler treatment and a higher success rate. In this observational study carried out on 68 subjects diagnosed with either breast or lung cancer and 34 healthy volunteers, we hydrolyzed the glycoproteins in saliva and quantified the obtained free sugars (fucose, mannose, galactose, glucosamine, and galactosamine) by using high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD). The glycosidic profiles were compared by using multivariate statistical analysis, showing differential glycosylation patterns among the three categories. Furthermore, Receiver Operating Characteristics (ROC) analysis allowed obtaining a reliable and minimally invasive protocol able to discriminate between healthy and pathological subjects.

13.
Foods ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121076

RESUMEN

Cyclodextrins (CDs) are oligosaccharides, comprising 6 (α), 7 (ß), or 8 (γ) glucose residues, used to prepare oil-in-water emulsions and improve oil stability towards degradation. In this research, the aptitude of α-, ß-, and γ-CDs to form complexes with a supercritical CO2 extracted lycopene-rich tomato oil (TO) was comparatively assessed. TO/CD emulsions and the resulting freeze-dried powders were characterized by microscopy, Fourier transform infrared-attenuated total reflection (FTIR-ATR), and differential scanning calorimetry (DSC), as well as for their antioxidant activity. Furthermore, carotenoid stability was monitored for 90 days at 25 and 4 °C. Confocal and SEM microscopy revealed morphological differences among samples. α- and ß-CDs spontaneously associated into microcrystals assembling in thin spherical shells (cyclodextrinosomes, Ø ≈ 27 µm) at the oil/water interface. Much smaller (Ø ≈ 9 µm) aggregates were occasionally observed with γ-CDs, but most TO droplets appeared "naked". FTIR and DSC spectra indicated that most CDs did not participate in TO complex formation, nevertheless structurally different interfacial complexes were formed. The trolox equivalent antioxidant capacity (TEAC) activity of emulsions and powders highlighted better performances of α- and ß-CDs as hydrophobic antioxidants-dispersing agents across aqueous media. Regardless of CDs type, low temperature slowed down carotenoid degradation in all samples, except all-[E]-lycopene, which does not appear efficiently protected by any CD type in the long storage period.

14.
Front Nutr ; 7: 147, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015121

RESUMEN

Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.

15.
Front Plant Sci ; 10: 769, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263475

RESUMEN

The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.

16.
J Agric Food Chem ; 65(30): 6240-6246, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28686843

RESUMEN

Heavy metal excess in soil represents a critical problem for crop productivity. Among these pollutants, cadmium (Cd) is one of the most dangerous in terms of food-chain contamination. Two durum wheat near-isogenic lines (NILs) and 12 commercial varieties (cultivars Arcangelo, Aureo, Aziziah, Cappelli, Cirillo, Creso, Iride, Maestrale, Parsifal, Russello, Strongfield, and Svevo) of durum wheat were exposed to a nontoxic level of Cd to evaluate its concentration in grains, roots, and shoots, as well as effects on biomass production. Cultivar Iride showed the most interesting behavior because it stored large amounts of Cd in the roots, preventing its translocation to grains. On the contrary, Cirillo and Svevo genotypes were characterized by a high Cd concentration in the grains. Furthermore, a molecular characterization employing the ScOPC20 marker associated with the Cd uptake locus has shown the absence of the expected fragment in the Iride variety and in other varieties characterized by low Cd concentration, as well as the presence of it in high Cd-accumulating cultivars.


Asunto(s)
Cadmio/análisis , Triticum/química , Raíces de Plantas/química , Brotes de la Planta/química , Semillas/química , Suelo/química , Contaminantes del Suelo/análisis
17.
Oxid Med Cell Longev ; 2017: 7468538, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29430284

RESUMEN

Carotenoids, including ß-carotene, lycopene, and derivatives, such as retinoic acid, have been studied for their significant antiproliferative and differentiating activity on cancer cells in experimental models and in clinics. We are presenting here data on the mechanism of action of a carotenoid-enriched extract obtained from the pumpkin Cucurbita moschata, variety "long of Naples," on two malignant human cell lines, Caco-2 and SAOs, derived from a colon adenocarcinoma and an osteosarcoma, respectively. The carotenoid extract has been obtained from pumpkin pulp and seeds by supercritical CO2 extraction and employed to prepare oil-in-water nanoemulsions. The nanoemulsions, applied at a final carotenoid concentration of 200-400 µg/ml, were not cytotoxic, but induced a delay in cell growth of about 40% in both SAOs and Caco-2 cell lines. This effect was associated with the activation of a "nonprotective" form of autophagy and, in SAOs cells, to the induction of cell differentiation via a mechanism that involved AMPK activation. Our data suggest the presence of a pool of bioactive compounds in the carotenoid-enriched extract, acting additively, or synergistically, to delay cell growth in cancer cells.


Asunto(s)
Autofagia/genética , Carotenoides/metabolismo , Cucurbita/química , Neoplasias/metabolismo , Humanos
18.
Food Funct ; 7(1): 574-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26462607

RESUMEN

This study investigates the antioxidant components [lycopene, total phenolics, total flavonoids, ascorbic acid (AsA) and dehydroascorbic acid (DHA)] as well as antioxidant activities of the hydrophilic and lipophilic fractions (AAHF and AALF) of peel, pulp and seed fractions isolated from red-ripe berries of the ordinary tomato cultivar Rio Grande and the two high-lycopene tomato breeding lines HLT-F61 and HLT-F62 simultaneously grown in an open-field of Northern Tunisia. Significant differences (p < 0.05) were found among cultivars for each trait studied. All fractions isolated from the red-ripe berries of HLT lines showed higher lycopene, total phenolics and total flavonoid contents, as well as higher AAHF and AALF, than those isolated from Rio Grande. Regardless of the fraction, HLT-F61 had the highest lycopene content (893.0 mg per kg fw, 280.0 mg per kg fw, and 47.5 mg per kg fw in peel, pulp and seed fractions, respectively) and total phenolics at least 2-fold and 3-fold higher than HLT-F62 and Rio Grande, respectively. Peel and seed fractions from HLT-F61 red-ripe tomato berries had the highest AsA content (345 mg per kg fw and 115 mg per kg fw, respectively), while no significant difference was found in the seed fraction between HLT-F62 and Rio Grande. The HLT-F62 pulp fraction showed the highest content of AsA (186 mg per kg fw) and DHA (151 mg per kg fw) among all the assayed cultivars. Except for the peel fraction, where HLT-F61 had similar AAHF values to HLT-F62, the high-lycopene line HLT-F61 showed higher AAHF values than HLT-F62 and Rio Grande. Regardless of the fraction, the highest AALF values were recorded in HLT-F61 berries. Thus, both HLT tomato lines are promising for the introduction, as advanced hybrids, in either fresh market or processing industry.


Asunto(s)
Antioxidantes/metabolismo , Carotenoides/química , Fraccionamiento Químico , Fitoquímicos/química , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Cruzamiento , Carotenoides/metabolismo , Frutas/química , Licopeno , Extractos Vegetales/química , Extractos Vegetales/farmacología , Selección Genética
19.
Food Chem ; 213: 545-553, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27451216

RESUMEN

A study was carried out to produce functional pasta by adding bran aqueous extract (BW) and bran oleoresin (BO) obtained using ultrasound and supercritical CO2, respectively, or a powdery lyophilized tomato matrix (LT). The bioactive compounds, hydrophilic and lipophilic antioxidant activity (HAA and LAA) in vitro, were evaluated. BW supplementation did not improve antioxidant activity, whilst LT pasta showed unconventional taste and odor. BO pasta had good levels of tocochromanols (2551µg/100g pasta f.w.) and carotenoids (40.2µg/100g pasta f.w.), and the highest HAA and LAA. The oleoresin altered starch swelling and gluten network, as evidenced by scanning electron microscopy, therefore BO pasta had structural characteristics poor compared with the control (4.8% vs. 3.2% cooking loss), although this difference did not affect significantly overall sensory judgment (74 vs. 79 for BO and control, respectively). BO supplementation was most effective for increasing antioxidant activity without jeopardizing pasta quality.


Asunto(s)
Alimentos Fortificados/análisis , Solanum lycopersicum/química , Triticum/química , Antioxidantes/análisis , Carotenoides/análisis , Glútenes/análisis , Extractos Vegetales , Olfato , Almidón/análisis , Gusto
20.
Food Chem ; 199: 684-93, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26776025

RESUMEN

Here we describe the encapsulation in α-cyclodextrins (α-CDs) of wheat bran, pumpkin and tomato oleoresins, extracted by supercritical carbon dioxide, to obtain freeze-dried powders useful as ready-to-mix ingredients for novel functional food formulation. The stability of tocochromanols, carotenoids and fatty acids in the oleoresin/α-CD complexes, compared to the corresponding free oleoresins, was also monitored over time in different combinations of storage conditions. Regardless of light, storage at 25°C of free oleoresins determined a rapid decrease in carotenoids, tocochromanols and PUFAs. α-CD encapsulation improved the stability of most bioactive compounds. Storage at 4°C synergized with encapsulation in preventing degradation of bioactives. Unlike all other antioxidants, lycopene in tomato oleoresin/α-CD complex resulted to be more susceptible to oxidation than in free oleoresin, likely due to its selective sequestration from the interaction with other lipophilic molecules of the oleoresin.


Asunto(s)
Carotenoides/química , Ácidos Grasos/química , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , alfa-Ciclodextrinas/química , Antioxidantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA