Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Handb Exp Pharmacol ; 278: 249-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35902436

RESUMEN

Functional characterization of endolysosomal ion channels is challenging due to their intracellular location. With recent advances in endolysosomal patch clamp technology, it has become possible to directly measure ion channel currents across endolysosomal membranes. Members of the transient receptor potential (TRP) cation channel family, namely the endolysosomal TRPML channels (TRPML1-3), also called mucolipins, as well as the distantly related two-pore channels (TPCs) have recently been characterized in more detail with endolysosomal patch clamp techniques. However, answers to many physiological questions require work in intact cells or animal models. One major obstacle thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic in nature and thus impermeable for cell membranes. Microinjection, on the other hand, is technically demanding. There is also a risk of losing essential co-factors for channel activation or inhibition in isolated preparations. Therefore, lipophilic, membrane-permeable small-molecule activators and inhibitors for TRPMLs and TPCs are urgently needed. Here, we describe and discuss the currently available small-molecule modulators of TRPMLs and TPCs.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Lisosomas/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Cationes/metabolismo
2.
Arch Pharm (Weinheim) ; 355(2): e2100362, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34738656

RESUMEN

Two independent chiral pool syntheses of both enantiomers of the TRPML inhibitor, trans-ML-SI3, were developed, starting from commercially available (1S,2R)- and (1R,2S)-configured cis-2-aminocyclohexanols. Both routes lead to the target compounds in excellent enantiomeric purity and good overall yields. For the most attractive (-)-trans-enantiomer, the R,R-configuration was identified by these unambiguous syntheses, and the results were confirmed by single-crystal X-ray structure analysis. These effective synthetic approaches further allow flexible variation of prominent residues in ML-SI3 for future in-depth analysis of structure-activity relationships as both the piperazine and the N-sulfonyl residues are introduced into the molecule at late stages of the synthesis.


Asunto(s)
Ciclohexanoles/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Ciclohexanoles/síntesis química , Ciclohexanoles/química , Estereoisomerismo , Relación Estructura-Actividad
3.
Cell Rep ; 42(12): 113501, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38039128

RESUMEN

Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Asunto(s)
Selectina-P , Canales de Dos Poros , Ratones , Humanos , Animales , Selectina-P/metabolismo , Células Endoteliales/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Adhesión Celular , Leucocitos/metabolismo , Endotelio Vascular/metabolismo
4.
Eur J Med Chem ; 210: 112966, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33187805

RESUMEN

The members of the TRPML subfamily of non-selective cation channels (TRPML1-3) are involved in the regulation of important lysosomal and endosomal functions, and mutations in TRPML1 are associated with the neurodegenerative lysosomal storage disorder mucolipidosis type IV. For in-depth investigation of functions and (patho)physiological roles of TRPMLs, membrane-permeable chemical tools are urgently needed. But hitherto only two TRPML inhibitors, ML-SI1 and ML-SI3, have been published, albeit without clear information about stereochemical details. In this investigation we developed total syntheses of both inhibitors. ML-SI1 was only obtained as a racemic mixture of inseparable diastereomers and showed activator-dependent inhibitory activity. The more promising tool is ML-SI3, hence ML-SI1 was not further investigated. For ML-SI3 we confirmed by stereoselective synthesis that the trans-isomer is significantly more active than the cis-isomer. Separation of the enantiomers of trans-ML-SI3 further revealed that the (-)-isomer is a potent inhibitor of TRPML1 and TRPML2 (IC50 values 1.6 and 2.3 µM) and a weak inhibitor (IC50 12.5 µM) of TRPML3, whereas the (+)-enantiomer is an inhibitor on TRPML1 (IC50 5.9 µM), but an activator on TRPML 2 and 3. This renders the pure (-)-trans-ML-SI3 more suitable as a chemical tool for the investigation of TRPML1 and 2 than the racemate. The analysis of 12 analogues of ML-SI3 gave first insights into structure-activity relationships in this chemotype, and showed that a broad variety of modifications in both the N-arylpiperazine and the sulfonamide moiety is tolerated. An aromatic analogue of ML-SI3 showed an interesting alternative selectivity profile (strong inhibitor of TRPML1 and strong activator of TRPML2).


Asunto(s)
Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Calcio/metabolismo , Células HEK293 , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo
5.
Sci Rep ; 11(1): 8313, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859333

RESUMEN

The cation channel TRPML1 is an important regulator of lysosomal function and autophagy. Loss of TRPML1 is associated with neurodegeneration and lysosomal storage disease, while temporary inhibition of this ion channel has been proposed to be beneficial in cancer therapy. Currently available TRPML1 channel inhibitors are not TRPML isoform selective and block at least two of the three human isoforms. We have now identified the first highly potent and isoform-selective TRPML1 antagonist, the steroid 17ß-estradiol methyl ether (EDME). Two analogs of EDME, PRU-10 and PRU-12, characterized by their reduced activity at the estrogen receptor, have been identified through systematic chemical modification of the lead structure. EDME and its analogs, besides being promising new small molecule tool compounds for the investigation of TRPML1, selectively affect key features of TRPML1 function: autophagy induction and transcription factor EB (TFEB) translocation. In addition, they act as inhibitors of triple-negative breast cancer cell migration and invasion.


Asunto(s)
Autofagia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Femenino , Humanos , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA