Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 132(1): 8-30, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34152057

RESUMEN

The emergence of polymyxin resistance, due to transferable mcr genes, threatens public and animal health as there are limited therapeutic options. As polymyxin is one of the last-line antibiotics, there is a need to contain the spread of its resistance to conserve its efficacy. Herein, we describe current and emerging polymyxin resistance diagnostics to inform faster clinical diagnostic choices. A literature search in diverse databases for studies published between 2016 and 2020 was performed. English articles evaluating colistin resistance methods/diagnostics were included. Screening resulted in the inclusion of 93 journal articles. Current colistin resistance diagnostics are either phenotypic or molecular. Broth microdilution is currently the only gold standard for determining colistin MICs (minimum inhibitory concentration). Phenotypic methods comprise of agar-based methods such as CHROMagar™ Col-APSE, SuperPolymyxin, ChromID® Colistin R, LBJMR and LB medium; manual MIC-determiners viz., UMIC, MICRONAUT MIC-Strip and ComASP Colistin; automated antimicrobial susceptibility testing systems such as BD Phoenix, MICRONAUT-S, MicroScan, Sensititre and Vitek 2; MCR-detectors such as lateral flow immunoassay (LFI) and chelator-based assays including EDTA- and DPA-based tests, that is, combined disk test, modified colistin broth-disk elution (CBDE), Colispot, and Colistin MAC test as well as biochemical colorimetric tests, that is, Rapid Polymyxin NP test and Rapid ResaPolymyxin NP test. Molecular methods only characterize mobile colistin resistance; they include PCR, LAMP and whole-genome sequencing. Due to the faster turnaround time (≤3 h), improved sensitivity (84%-100%) and specificity (93.3%-100%) of the Rapid ResaPolymyxin NP test and Fastinov® , we recommend this test for initial screening of colistin-resistant isolates. This can be followed by CBDE with EDTA or the LFI as they both have 100% sensitivity and a specificity of ≥94.3% for the rapid screening of mcr genes. However, molecular assays such as LAMP and PCR may be considered in well-equipped clinical laboratories.


Asunto(s)
Farmacorresistencia Bacteriana , Polimixinas , Animales , Antibacterianos/farmacología , Colistina/farmacología , Laboratorios Clínicos , Pruebas de Sensibilidad Microbiana , Polimixinas/farmacología
2.
Microb Drug Resist ; 28(11): 1028-1036, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251876

RESUMEN

Background: Extensive use of carbapenems to treat multidrug-resistant (MDR) Gram-negative bacteria (GNB) facilitates the wide dissemination of carbapenemase-producing carbapenem-resistant GNB. Colistin was reintroduced into clinical settings to manage these GNB infections. However, there is currently an increase in the dissemination of mobile colistin resistance (mcr)-producing colistin-resistant GNB isolates in clinical settings. The epidemiology of carbapenemases and mcr in Pretoria was evaluated. Methods: Clinical MDR GNB were collected and screened for carbapenemases and mcr using polymerase chain reaction (PCR); their antibiotic susceptibility profiles were elucidated using the Vitek® 2 automated system (Biomerieux, France) and microbroth dilution (for colistin). Results and Discussion: A total of 306 isolates were collected; a majority of these were Klebsiella pneumoniae (n = 208) and were collected from males (n = 158). The isolates were retrieved from a variety of infection sites, including urine, blood cultures, and rectal swabs. The Vitek 2 system found that these isolates were largely resistant to ß-lactams, where 217 (70.9%) had reduced susceptibility to at least one carbapenem (ertapenem, meropenem, or imipenem), and 81 isolates (26.5%) were resistant to colistin. PCR screening identified 201 (65.7%) isolates harboring carbapenemase genes consisting of blaOXA-48 (170, 84.2%), blaNDM (31, 15.4%), blaIMP (5, 2%), blaKPC (4, 1%), and blaVIM (5, 2%). Furthermore, 14 blaOXA-48-producing isolates were coharboring blaVIM (2), blaNDM (9), blaKPC (1), and blaIMP (2) genes. Only one isolate harbored the mobile colistin resistance (mcr)-1 gene, and this is the first report of an mcr-1-producing Acinetobacter baumannii isolate in South Africa. Conclusion: There is high endemicity of carbapenemase genes and a low prevalence of mcr genes in GNB, particularly in K. pneumoniae, in health care facilities in Pretoria and surrounding regions of South Africa. Significance: Health care facilities in Pretoria are becoming breeding grounds for MDR infections that threaten public health. Careful use of carbapenems and other antibiotics is necessary to prevent further escalation and outbreak of these MDR strains that can claim several lives.


Asunto(s)
Colistina , Humanos , Masculino , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA