Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Z Med Phys ; 31(2): 154-165, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32747175

RESUMEN

PURPOSE: This paper presents the implementation and comparison of two independent methods of beam monitor calibration in terms of number of particles for scanned proton and carbon ion beams. METHODS: In the first method, called the single-layer method, dose-area-product to water (DAPw) is derived from the absorbed dose to water determined using a Roos-type plane-parallel ionization chamber in single-energy scanned beams. This is considered the reference method for the beam monitor calibration in the clinically relevant proton and carbon energy ranges. In the second method, called the single-spot method, DAPw of a single central spot is determined using a Bragg-peak (BP) type large-area plane-parallel ionization chamber. Emphasis is given to the detailed characterization of the ionization chambers used for the beam monitor calibration. For both methods a detailed uncertainty budget on the DAPw determination is provided as well as on the derivation of the number of particles. RESULTS: Both calibration methods agreed on average within 1.1% for protons and within 2.6% for carbon ions. The uncertainty on DAPw using single-layer beams is 2.1% for protons and 3.1% for carbon ions with major contributions from the available values of kQ and the average spot spacing in both lateral directions. The uncertainty using the single-spot method is 2.2% for protons and 3.2% for carbon ions with major contributions from the available values of kQ and the non-uniformity of the BP chamber response, which can lead to a correction of up-to 3.2%. For the number of particles, an additional dominant uncertainty component for the mean stopping power per incident proton (or the CEMA) needs to be added. CONCLUSION: The agreement between both methods enhances confidence in the beam monitor calibration and the estimated uncertainty. The single-layer method can be used as a reference and the single-spot method is an alternative that, when more accumulated knowledge and data on the method becomes available, can be used as a redundant dose monitor calibration method. This work, together with the overview of information from the literature provided here, is a first step towards comprehensive information on the single-spot method.


Asunto(s)
Radiometría , Sincrotrones , Calibración , Protones , Incertidumbre
2.
Med Phys ; 47(2): 380-392, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31742730

RESUMEN

PURPOSE: This paper describes the clinical implementation and medical commissioning of the MedAustron Particle Therapy Accelerator (MAPTA) for non-isocentric scanned proton beam treatments. METHODS: Medical physics involvement during technical commissioning work is presented. Acceptance testing procedures, including advanced measurement methods of intra-spill beam variations, are defined. Beam monitor calibration using two independent methods based on a dose-area product formalism is described. Emphasis is given to the medical commissioning work and the specificities related to non-isocentric irradiation, since a key feature of MedAustron is the routine delivery of non-isocentric scanned proton beam treatments. RESULTS: Key commissioning results and beam stability trend lines for more than 2 yr of clinical operation have been provided. Intra-spill beam range, size, and position variations were within specifications of 0.3 mm, 15%, and 0.5 mm, respectively. The agreement between two independent beam monitor calibration methods was better than 1.0%. Non-isocentric treatment delivery allowed lateral penumbra reduction of up to about 30%. Daily QA measurements of the beam range, size, position, and dose were always within 1 mm, 10%, 1 mm, and 2% from the baseline data, respectively. CONCLUSIONS: Non-isocentric treatments have been successfully implemented at MedAustron for routine scanned proton beam therapy using horizontal and vertical fixed beamlines. Up to now every patient was treated in non-isocentric conditions. The presented methodology to implement a new Scanned Ion Beam Delivery (SIBD) system into clinical routine for proton therapy may serve as a guidance for other centers.


Asunto(s)
Aceleradores de Partículas , Terapia de Protones/instrumentación , Calibración
3.
Phys Med ; 71: 115-123, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32126519

RESUMEN

PURPOSE: To present a reference Monte Carlo (MC) beam model developed in GATE/Geant4 for the MedAustron fixed beam line. The proposed model includes an absolute dose calibration in Dose-Area-Product (DAP) and it has been validated within clinical tolerances for non-isocentric treatments as routinely performed at MedAustron. MATERIAL AND METHODS: The proton beam model was parametrized at the nozzle entrance considering optic and energy properties of the pencil beam. The calibration in terms of absorbed dose to water was performed exploiting the relationship between number of particles and DAP by mean of a recent formalism. Typical longitudinal dose distribution parameters (range, distal penumbra and modulation) and transverse dose distribution parameters (spot sizes, field sizes and lateral penumbra) were evaluated. The model was validated in water, considering regular-shaped dose distribution as well as clinical plans delivered in non-isocentric conditions. RESULTS: Simulated parameters agree with measurements within the clinical requirements at different air gaps. The agreement of distal and longitudinal dose distribution parameters is mostly better than 1 mm. The dose difference in reference conditions and for 3D dose delivery in water is within 0.5% and 1.2%, respectively. Clinical plans were reproduced within 3%. CONCLUSION: A full nozzle beam model for active scanning proton pencil beam is described using GATE/Geant4. Absolute dose calibration based on DAP formalism was implemented. The beam model is fully validated in water over a wide range of clinical scenarios and will be inserted as a reference tool for research and for independent dose calculation in the clinical routine.


Asunto(s)
Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Calibración , Humanos , Método de Montecarlo , Óptica y Fotónica , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Programas Informáticos , Sincrotrones
4.
Med Phys ; 45(1): 352-369, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29105791

RESUMEN

PURPOSE: To describe the implementation of dosimetry equipment and phantoms into clinical practice of light ion beam therapy facilities. This work covers not only standard dosimetry equipment such as computerized water scanners, films, 2D-array, thimble, and plane parallel ionization chambers, but also dosimetry equipment specifically devoted to the pencil beam scanning delivery technique such as water columns, scintillating screens or multilayer ionization chambers. METHOD: Advanced acceptance testing procedures developed at MedAustron and complementary to the standard acceptance procedures proposed by the manufacturer are presented. Detailed commissioning plans have been implemented for each piece of dosimetry equipment and include an estimate of the overall uncertainty budget for the range of clinical use of each device. Some standard dosimetry equipment used in many facilities was evaluated in detail: for instance, the recombination of a 2D-array or the potential use of a microdiamond detector to measure reference transverse dose profiles in water in the core of the primary pencil beams and in the low-dose nuclear halo (over four orders of magnitude in dose). RESULTS: The implementation of dosimetry equipment as described in this work allowed determining absolute spot sizes and spot positions with an uncertainty better than 0.3 mm. Absolute ranges are determined with an uncertainty comprised of 0.2-0.6 mm, depending on the measured range and were reproduced with a maximum difference of 0.3 mm over a period of 12 months using three different devices. CONCLUSION: The detailed evaluation procedures of dosimetry equipment and phantoms proposed in this work could serve as a guidance for other medical physicists in ion beam therapy facilities and also in conventional radiation therapy.


Asunto(s)
Iones/uso terapéutico , Fantasmas de Imagen , Radiometría/instrumentación , Humanos , Pelvis , Dosímetros de Radiación , Programas Informáticos , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA