Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(9): E828-37, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401540

RESUMEN

Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation and likely contribute to the remarkable diversity of placental structures. Independent capture events have been identified in primates, rodents, lagomorphs, and carnivores, where they are involved in the formation of a syncytium layer at the fetomaternal interface via trophoblast cell-cell fusion. We searched for similar genes within the suborder Ruminantia where the placenta lacks an extended syncytium layer but displays a heterologous cell-fusion process unique among eutherian mammals. An in silico search for intact envelope genes within the Bos taurus genome identified 18 candidates belonging to five endogenous retrovirus families, with one gene displaying both placenta-specific expression, as assessed by quantitative RT-PCR analyses of a large panel of tissues, and conservation in the Ovis aries genome. Both the bovine and ovine orthologs displayed fusogenic activity by conferring infectivity on retroviral pseudotypes and triggering cell-cell fusion. In situ hybridization of placenta sections revealed specific expression in the trophoblast binucleate cells, consistent with a role in the formation--by heterologous cell fusion with uterine cells--of the trinucleate cells of the cow and the syncytial plaques of the ewe. Finally, we show that this gene, which we named "Syncytin-Rum1," is conserved among 16 representatives of higher ruminants, with evidence for purifying selection and conservation of its fusogenic properties, over 30 millions years of evolution. These data argue for syncytins being a major driving force in the emergence and diversity of the placenta.


Asunto(s)
Retrovirus Endógenos/genética , Productos del Gen env/genética , Cabras/genética , Placenta/anatomía & histología , Proteínas Gestacionales/genética , Rumiantes/genética , Proteínas del Envoltorio Viral/genética , Animales , Bovinos , Biología Computacional , Secuencia Conservada , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Variación Genética , Genoma/genética , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Filogenia , Placenta/citología , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selección Genética , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 107(8): 3782-7, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20142478

RESUMEN

We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins (Envs). The envelope-mediated immunosuppression was manifested by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation specifically abolishes IS activity without affecting the "mechanical" fusogenic function of the entire envelope. Here, we genetically "switched off' the envelope-mediated immunosuppression of an infectious retrovirus, the Friend murine leukemia virus, while preserving mutant envelope infectivity both ex vivo and in vivo, thus allowing us to test the functional importance of envelope-mediated immunosuppression in retrovirus physiology. Remarkably, we show, in vivo, that the non-IS mutant virus displays the same propagation kinetics as its WT counterpart in irradiated immunocompromised mice but that it is rapidly and totally cleared from normal immunocompetent mice, which become fully protected against a challenge with the WT retrovirus. Using cell depletion strategies, we further establish that envelope-mediated immunosuppression enables the retrovirus to escape innate (natural killer cells) and adaptive (CD8 T cells) antiviral effectors. Finally, we show that inactivated mutant virions induce higher humoral and cellular responses than their WT counterparts. In conclusion, our work demonstrates the critical role of Env-induced immunosuppression for retrovirus propagation in vivo and identifies a unique definite target for antiretroviral therapies and vaccine strategies, also characterized in the human T-cell leukemia virus (HTLV) and xenotropic murine leukemia virus-related virus (XMRV) retroviruses, opening unprecedented prospects for the treatment of retroviral diseases.


Asunto(s)
Virus de la Leucemia Murina de Friend/inmunología , Tolerancia Inmunológica , Leucemia Experimental/inmunología , Infecciones por Retroviridae/inmunología , Infecciones Tumorales por Virus/inmunología , Proteínas del Envoltorio Viral/inmunología , Factores de Virulencia/inmunología , Animales , Virus de la Leucemia Murina de Friend/genética , Leucemia Experimental/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Células 3T3 NIH , Infecciones por Retroviridae/prevención & control , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Infecciones Tumorales por Virus/prevención & control , Proteínas del Envoltorio Viral/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Factores de Virulencia/genética
3.
Proc Natl Acad Sci U S A ; 104(51): 20534-9, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18077339

RESUMEN

We have previously demonstrated that the envelope proteins of a murine and primate retrovirus are immunosuppressive in vivo. This property was manifested by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to have the env-expressing cells escape (at least transiently) immune rejection. Here, we analyzed the immunosuppressive activity of the human and murine syncytins. These are envelope genes from endogenous retroviruses independently coopted by ancestral hosts, conserved in evolution, specifically expressed in the placenta, and with a cell-cell fusogenic activity likely contributing to placenta morphogenesis. We show that in both humans and mice, one of the two syncytins (human syncytin-2 and mouse syncytin-B) is immunosuppressive and, rather unexpectedly, the other (human syncytin-1 and mouse syncytin-A) is not (albeit able to induce cell-cell fusion). Delineation of the immunosuppressive domain by deletion analysis, combined with a comparison between immunosuppressive and nonimmunosuppressive sequences, allowed us to derive a mutation rule targeted to specific amino acids, resulting in selective switch from immunosuppressive to nonimmunosuppressive envelope proteins and vice versa. These results unravel a critical function of retroviral envelopes, not necessarily "individually" selected for in the retrovirus endogenization process, albeit "tandemly" conserved in evolution for the syncytin pairs in primates and Muridae. Selective inactivation of immunosuppression, under conditions not affecting fusogenicity, should be important for understanding the role of this function in placental physiology and maternofetal tolerance.


Asunto(s)
Retrovirus Endógenos , Productos del Gen env/inmunología , Tolerancia Inmunológica , Placenta/inmunología , Proteínas Virales de Fusión/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Productos del Gen env/genética , Humanos , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Mutagénesis , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/inmunología , Estructura Terciaria de Proteína , Proteínas Virales de Fusión/genética
4.
J Mol Biol ; 352(5): 1029-34, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16140326

RESUMEN

HERV-FRD is a human endogenous retrovirus that entered the human genome 40 million years ago. Its envelope gene, syncytin-2, was diverted by an ancestral host most probably because of its fusogenic property, for a role in placenta morphogenesis. It was maintained in a functional state in all primate branches as a bona fide cellular gene, submitted to a very low mutation rate as compared to infectious retrovirus genomes. The structure of the syncytin-2 protein thus provides a good insight into that of the oldest mammalian retroviral envelope. Here, we report the crystal structure of a central fragment of its "fossil" ectodomain, allowing a remarkable superposition with the structures of the corresponding domains of present-day infectious retroviruses, in spite of a more than 60% divergent sequence. These results suggest the existence of a unique structural solution selected by these proteins for their fusogenic function.


Asunto(s)
Productos del Gen env/química , Proteínas Gestacionales/química , Primates/virología , Retroviridae/genética , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Fusión Celular , Cristalografía por Rayos X , Productos del Gen env/fisiología , Virus Linfotrópico T Tipo 1 Humano/química , Humanos , Datos de Secuencia Molecular , Virus de la Leucemia Murina de Moloney/química , Proteínas Gestacionales/fisiología , Estructura Terciaria de Proteína , Retroviridae/química
5.
Genome Res ; 16(12): 1548-56, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17077319

RESUMEN

Human Endogenous Retroviruses are expected to be the remnants of ancestral infections of primates by active retroviruses that have thereafter been transmitted in a Mendelian fashion. Here, we derived in silico the sequence of the putative ancestral "progenitor" element of one of the most recently amplified family - the HERV-K family - and constructed it. This element, Phoenix, produces viral particles that disclose all of the structural and functional properties of a bona-fide retrovirus, can infect mammalian, including human, cells, and integrate with the exact signature of the presently found endogenous HERV-K progeny. We also show that this element amplifies via an extracellular pathway involving reinfection, at variance with the non-LTR-retrotransposons (LINEs, SINEs) or LTR-retrotransposons, thus recapitulating ex vivo the molecular events responsible for its dissemination in the host genomes. We also show that in vitro recombinations among present-day human HERV-K (also known as ERVK) loci can similarly generate functional HERV-K elements, indicating that human cells still have the potential to produce infectious retroviruses.


Asunto(s)
Retrovirus Endógenos/genética , Provirus/genética , Retroelementos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular , Biología Computacional , Secuencia de Consenso , Retrovirus Endógenos/clasificación , Evolución Molecular , Amplificación de Genes , Genoma Humano , Humanos , Mutagénesis Insercional , Polimorfismo Genético , Provirus/ultraestructura , Recombinación Genética , Transfección , Integración Viral
6.
J Biol Chem ; 279(28): 28936-44, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15123675

RESUMEN

The only tyrosine recombinase so far studied in archaea, the SSV1 integrase, harbors several changes in the canonical residues forming the catalytic pocket of this family of recombinases. This raised the possibility of a different mechanism for archaeal tyrosine recombinase. The residues of Int(SSV) tentatively involved in catalysis were modified by site-directed mutagenesis, and the properties of the corresponding mutants were studied. The results show that all of the targeted residues are important for activity, suggesting that the archaeal integrase uses a mechanism similar to that of bacterial or eukaryotic tyrosine recombinases. In addition, we show that Int(SSV) exhibits a type IB topoisomerase activity because it is able to relax both positive and negative supercoils. Interestingly, in vitro complementation experiments between the inactive integrase mutant Y314F and all other inactive mutants restore in all cases enzymatic activity. This suggests that, as for the yeast Flp recombinase, the active site is assembled by the interaction of the tyrosine from one monomer with the other residues from another monomer. The shared active site paradigm of the eukaryotic Flp protein may therefore be extended to the archaeal tyrosine recombinase Int(SSV).


Asunto(s)
Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Análisis Mutacional de ADN , ADN/metabolismo , Integrasas/genética , Integrasas/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 277(19): 16758-67, 2002 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-11875075

RESUMEN

SSV1 is a virus infecting the extremely thermophilic archaeon Sulfolobus shibatae. The viral-encoded integrase is responsible for site-specific integration of SSV1 into its host genome. The recombinant enzyme was expressed in Escherichia coli, purified to homogeneity, and its biochemical properties investigated in vitro. We show that the SSV1 integrase belongs to the tyrosine recombinases family and that Tyr(314) is involved in the formation of a 3'-phosphotyrosine intermediate. The integrase cleaves both strands of a synthetic substrate in a temperature-dependent reaction, the cleavage efficiency increasing with temperature. A discontinuity was observed in the Arrhenius plot above 50 degrees C, suggesting that a conformational transition may occur in the integrase at this temperature. Analysis of cleavage time course suggested that noncovalent binding of the integrase to its substrate is rate-limiting in the cleavage reaction. The cleavage positions were localized on each side of the anticodon loop of the tRNA gene where SSV1 integration takes place. Finally, the SSV1 integrase is able to cut substrates harboring mismatches in the binding site. For the cleavage step, the chemical nature of the base in position -1 of cleavage seems to be more important than its pairing to the opposite strand.


Asunto(s)
Integrasas/química , Integrasas/metabolismo , Arabinosa/metabolismo , Archaea/metabolismo , Disparidad de Par Base , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Clonación Molecular , Codón , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Fuselloviridae , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfotirosina/metabolismo , Unión Proteica , Conformación Proteica , ARN de Transferencia/metabolismo , ARN de Transferencia de Arginina/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Sulfolobus/metabolismo , Temperatura , Factores de Tiempo , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA