Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Chem Soc ; 145(16): 9129-9135, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053567

RESUMEN

Although alcohols are readily oxidized by a variety of oxidants, their oxidation by metal nitrido complexes is yet to be studied. We report herein visible-light-induced oxidation of primary and secondary alcohols to carbonyl compounds by a strongly luminescent osmium(VI) nitrido complex (OsN). The proposed mechanism involves initial rate-limiting hydrogen-atom transfer (HAT) from the α-carbon of the alcohol to OsN*. Attempts to develop catalytic oxidation of alcohols by OsN* using PhIO as the terminal oxidant resulted in the formation of novel osmium(IV) iminato complexes in which the nitrido ligand is bonded to a δ-carbon of the alcohol. Experimental and theoretical studies suggest that OsN* is reductively quenched by PhIO to generate PhIO+, which is a highly active oxidant that readily undergoes α- and δ-C-H activation of alcohols.

2.
Small ; 18(13): e2105484, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35032140

RESUMEN

Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Biología , Catálisis , Humanos , Estructuras Metalorgánicas/química , Óxido Nítrico
3.
Inorg Chem ; 61(42): 16831-16840, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36228087

RESUMEN

A series of luminescent Pb2+ complexes, [Pb(L1)2]n (1), [Pb(L2)2]n (2), [Pb(L3)(NO3)(H2O)2]n (3), [Pb(L3)(Br)(H2O)]n (4), [Pb(L3)(Cl)(H2O)]n (5), and [Pb(L4)(H2O)2] (6) have been synthesized by treatment of polydentate tetrazolato ligands with various hydrated Pb2+ salts (HL1 = 2-(1H-tetrazol-5-yl)pyridine, HL2 = 3-(1H-tetrazol-5-yl)isoquinoline, HL3 = 6-(1H-tetrazol-5-yl)-2,2'-bipyridine, and H2L4 = 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine). These complexes have been characterized by IR, TGA, and elemental analysis. Their crystal structures have been determined by X-ray crystallography, and the phase purity of bulk samples were further confirmed by PXRD. Their luminescence properties have been investigated in detail, and their emission origin may involve ligand-centered π-π* transition, metal-centered s-p transition and charge-transfer character. It is interesting to note that 5 exhibits obviously enhanced red-shifted emission, whose photoluminescence quantum yield (PLQY = 16.5%) is much higher than the other compounds (≤2%). Most importantly, the emission property of 5 was strongly affected by temperature. When the temperature rises from 295 to 493 K, the emission maximum gradually shifts to high energy due to the loss of the aqua ligand. In contrast, when the temperature is lowered from 295 to 13 K, two emission bands were observed. The low-energy emission band exhibits a slight blue shift, while a new high-energy emission band appears at around 520 nm, which is assigned to ligand-centered phosphorescence. After removal of the coordinated aqua ligand, the emission of 5-H2O is very sensitive to the vapors of volatile primary amines and acids, although they have different response mechanisms. This result indicates that 5-H2O may be a potential multifunctional sensor for temperature, volatile amines, and acids. To decipher the emission origin, DFT calculations have also been carried out based on the structure units of these compounds.

4.
Chem Soc Rev ; 49(20): 7271-7283, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32954394

RESUMEN

Artificial photosynthesis is considered as one of the most promising strategies for solar-to-fuel conversion through sunlight-driven water splitting and CO2 reduction. This tutorial describes recent developments in the use of metal quaterpyridine complexes as electrocatalyts and photocatalysts for artificial photosynthesis.

5.
Inorg Chem ; 58(10): 6696-6705, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31063368

RESUMEN

A series of cyano-bridged homotrinuclear Re(I) complexes with the general formula of {[Re]'[Re][Re]'}+ {[Re]' = -[ReI(CO)2(LL)(X)]; [Re] = -[(NC)ReI(CO)2(phen)(CN)]-; LL = diimine, diphosphine, or two carbonyl ligands; X = triphenylphosphine or carbonyl ligand} and the corresponding mononuclear complex analogues were synthesized. The structures of most of the trinuclear Re(I) complexes have been determined by X-ray crystallography. The relative orientations of peripheral to central Re(I) units in these structures vary considerably. The photophysical properties of these trinuclear Re(I) complexes have been examined. Except for the trinuclear Re(I) complex with Br2phen ligand, all the other triads display orange to red photoluminescence derived from the 3MLCT [dπ(Re) → π*(phen)] origin of the central Re(I) unit, suggestive of efficient energy transfer between the peripheral chromophores and the central unit. In addition to the efficient energy transfer processes between the Re(I) chromophores in these trinuclear complexes, the ability of the [NC-Re-CN] bridging ligands for electronic coupling between the rhenium metal centers is evidenced by ca. 0.2-0.3 V separation of the two rhenium metal-based oxidation potentials of the chemically equivalent peripheral units.

6.
Inorg Chem ; 58(17): 11372-11381, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31411456

RESUMEN

A series of blue-green emitting RuII diisocyano complexes containing 2-benzoxazol-2-ylphenolate (PBO) have been prepared. The complexes were isolated under varied reaction conditions in two isomeric forms, i.e., trans,trans,trans- (1) and cis,trans,cis- (2), with varied ligand coordination geometry above the RuII center. The photoluminescence of the isomeric complexes has been compared and tuned by the systematic variation of the electronic properties of the isocyanides. The cis,trans,cis- isomers exhibit structureless emission in the blue-green region (471-517 nm) upon excitation at λex > 400 nm in dichloromethane solution at room temperature. Both isomeric forms show similarly structured greenish emission at 499-523 nm on excitation at λex > 355 nm in a methanol/ethanol (4:1) glassy medium at 77 K. On careful comparison with the corresponding absorption and electrochemical data, it is suggested that the solution emission of the cis,trans,cis- isomers (2) at room temperature is originated from the metal-to-ligand charge transfer (MLCT), while a ligand-centered (LC) parentage is assigned for the emission in a glassy state for both isomeric forms. In line with the above experimental results, DFT calculation demonstrates the change in the nature and relative energy of the HOMOs and LUMOs with respect to the varied ligand coordination geometry and π-accepting ability of the isocyanides.

7.
Inorg Chem ; 57(7): 3761-3774, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29521502

RESUMEN

A series of homoleptic mononuclear 8-coordinate FeII and CoII compounds, [FeII(L2)2](ClO4)2 (2), [FeII(L3)2](ClO4)2 (3), [FeII(L4)2](ClO4)2 (4), [CoII(L1)2](ClO4)2 (5), [CoII(L2)2](ClO4)2 (6), [CoII(L3)2](ClO4)2 (7), and [CoII(L4)2](ClO4)2 (8) (L1 and L2 are 2,9-dialkylcarboxylate-1,10-phenanthroline ligands; L3 and L4 are 6,6'-dialkylcarboxylate-2,2'-bipyridine ligands), have been obtained, and their crystal structures have been determined by X-ray crystallography. The metal center in all of these compounds has an oversaturated coordination number of 8, which is completed by two neutral homoleptic tetradentate ligands and is unconventional in 3d-metal compounds. These compounds are further characterized by electronic spectroscopy, cyclic voltammetry (CV), and magnetic measurements. CV measurements of these complexes in MeCN solution exhibit rich redox properties. Magnetic measurements on these compounds demonstrate that the observed single-ion magnetic (SIM) behavior in the previously reported [FeII(L1)2](ClO4)2 (1) is not a contingent case, since all of the 8-coordinate compounds 2-8 exhibit interesting slow magnetic relaxation under applied direct current fields.

8.
Dalton Trans ; 52(43): 16032-16042, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37850402

RESUMEN

The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).

9.
RSC Adv ; 12(42): 27267-27274, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276005

RESUMEN

A series of neutral luminescent bis(phosphine) Cu(i) complexes of pyridyl-tetrazolate ligands (L1-L3) with the general formula [CuI(L n )(P^P)] (1-6) were synthesized, which have been well characterized by IR, UV/vis, CV, 1H NMR and 31P NMR. For comparison, an Ag(i) complex [AgI(L2)(PPh3)2] (7) was also synthesized. The crystal structures of 2 and 7 have been further determined by X-ray crystallography. All these Cu(i) compounds show bright luminescence in the solid state with photoluminescence quantum yields (PLQYs) in the range of 25.8% to 85.0%. More interestingly, the Cu(i) complexes bearing an additional dangling aromatic ring on the diimine ligands exhibit enhanced luminescent performance in various solutions and their PLQYs are significantly higher than those of related Cu(i) complexes without steric protection. Compared with 1, the Cu(i) complexes with an additional dangling tetrazole moiety show a significant solvatochromic effect, which is uncommon for luminescent Cu(i) complexes. Moreover, [CuI(L2)(PPh3)2] (2) was further designed as an OLED material, which showed a high external quantum efficiency of 7.7%.

10.
Front Chem ; 9: 636431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912537

RESUMEN

Luminescent Pb2+-based metal-organic frameworks (MOFs) belong to a new class of multifunctional molecular materials with interesting luminescence properties and potential applications within a single crystalline phase. In this mini review, we present the recent advances that have been achieved in their applications as single-phase white-light emitting materials and chemosensors in the last decade. We focus on the trends in the modification of their structures and luminescence by various bridging ligands, and subsequently their multifunctional applications, which may affect the future development of the field.

11.
Front Vet Sci ; 8: 646652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644159

RESUMEN

Sea lice (Copepoda: Caligidae) are ectoparasites which negatively impact marine aquaculture species around the world. There are a limited number of treatments licensed for use against sea lice in tropical and semi-tropical farmed fish species. Emamectin benzoate (EB) was an effective pharmaceutical drug against sea lice infestations in several salmon industries before resistance to the product developed. This drug has not been extensively tested in marine fish within Asia. The objective of this study was to determine whether this drug could be used to treat oral infections with sea lice in hybrid grouper (Mycteroperca tigris × Epinephelus lanceolatus) cultured in saltwater net-pen sites in Hong Kong. We observed an overall reduction in sea lice infections over time, starting on the last day of the treatment up to the end of our study (i.e., 14 days after the last EB treatment). We also observed a large variation in concentrations of EB in fish on the last day of the treatment, which provides an explanation for the variation in response to the treatment. It also suggests that distribution of the medication to fish in saltwater net-pens is difficult, especially when medication is hand-mixed in the feed and possibly unevenly distributed in the daily rations. Overall, this study provides preliminary evidence that EB could be used to treat sea lice found in Hong Kong and potentially in other regions of SE Asia.

12.
Chem Commun (Camb) ; 56(54): 7491-7494, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497158

RESUMEN

The photocatalytic generation of an NADH synthetic analogue, i.e. 1-benzyl-1,4-dihydronicotinamide (1,4-BNAH), has been studied using the cobalt diimino-dioxime complexes and the BF2-bridged derivative as catalysts. 1,4-BNAH was produced in both aqueous and organic media at unprecedented turnover numbers with metal and organic photosensitizers, respectively.

13.
Inorg Chem ; 48(1): 400-6, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19061342

RESUMEN

The oxidation of ascorbic acid (H(2)A) by a trans-dioxoruthenium(VI) species, trans-[Ru(VI)(tmc)(O)(2)](2+) (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), has been studied in aqueous solutions under argon. The reaction occurs in two phases: trans-[Ru(VI)(tmc)(O)(2)](2+) + H(2)A --> trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + A, trans-[Ru(IV)(tmc)(O)(OH(2))](2+) + H(2)A --> trans-[Ru(II)(tmc)(OH(2))(2)](2+) + A. Further reaction involving anation by H(2)A occurs, and the species [Ru(III)(tmc)(A(2-))(MeOH)](+) can be isolated upon aerial oxidation of the solution at the end of phase two. The rate laws for both phases are first-order in both Ru(VI) and H(2)A, with the second-order rate constants k(2) = (2.58 +/- 0.04) x 10(3) M(-1) s(-1) at pH = 1.19 and k(2)' = (1.90 +/- 0.03) M(-1) s(-1) at pH = 1.24, T = 298 K and I = 0.1 M for the first and second phase, respectively. Studies on the effects of acidity on k(2) and k(2)(') suggest that HA(-) is the kinetically active species. Kinetic studies have also been carried out in D(2)O, and the deuterium isotope effects for oxidation of HA(-) by Ru(VI) and Ru(IV) are 5.0 +/- 0.3 and 19.3 +/- 2.9, respectively, consistent with a hydrogen atom transfer (HAT) mechanism for both phases. A linear correlation between log(rate constants) for oxidation by Ru(VI) and the O-H bond dissociation energies of HA(-) and hydroquinones is obtained, which also supports a HAT mechanism.


Asunto(s)
Ácido Ascórbico/química , Compuestos Organometálicos/química , Rutenio/química , Agua/química , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Soluciones , Espectrofotometría , Estereoisomerismo , Termodinámica
14.
Dalton Trans ; 48(2): 741-750, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30560254

RESUMEN

A series of polynuclear metal complexes, [Cu2(L1)(PPh3)4](ClO4)2 (1), [Cu3(L2)(PPh3)6](ClO4) (2), [Cu3(L3)(PPh3)6] (3), [Ag2(L1)(PPh3)4](BF4)2 (4), [Ag4(L2)2(PPh3)6] (5) and [Ag3(L3)(PPh3)5] (6), have been obtained from the reactions of the highly conjugated bridging ligands 2,3-bis(2-pyridyl)pyrazine (L1), 2,3-bis(2-tetrazoyl)pyrazine (H2L2) and 2,3-bis(2-tetrazoyl)imidazole (H3L3) with [Cu(MeCN)4]ClO4 and AgBF4, respectively. Their crystal structures have been determined by X-ray crystallography and their photophysical properties have been investigated in detail. Complexes 1 and 3 show photoluminescence in CH2Cl2 solution, while all the complexes exhibit obvious luminescence in the solid state; detailed photophysical studies and density functional theory calculations of these complexes have revealed that their lowest energy absorptions and emissions are predominantly derived from either metal-to-ligand charge-transfer (MLCT) or intraligand (IL) excited states.

15.
ChemSusChem ; 10(20): 4009-4013, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28840967

RESUMEN

The invention of efficient systems for the photocatalytic reduction of CO2 comprising earth-abundant metal catalysts is a promising approach for the production of solar fuels. One bottleneck is to design highly selective and robust molecular complexes that are able to transform the CO2 gas. The CuII quaterpyridine complex [Cu(qpy)]2+ (1) is found to be a highly efficient and selective catalyst for visible-light driven CO2 reduction in CH3 CN using [Ru(bpy)3 ]2+ (bpy: bipyridine) as photosensitizer and BIH/TEOA (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole/triethanolamine) as sacrificial reductant. The photocatalytic reaction is greatly enhanced by the presence of H2 O (1-4 % v/v), and a turnover number of >12 400 for CO production can be achieved with 97 % selectivity, which is among the highest of molecular 3d CO2 reduction catalysts. Results from Hg poisoning and dynamic light scattering experiments suggest that this photocatalyst is homogenous. To the best of our knowledge, 1 is the first example of molecular Cu-based catalyst for the photoreduction of CO2 .


Asunto(s)
Dióxido de Carbono/química , Monóxido de Carbono/química , Cobre/química , Compuestos Organometálicos/química , Procesos Fotoquímicos , Piridinas/química , Catálisis , Electroquímica , Oxidación-Reducción
16.
Dalton Trans ; 45(41): 16134-16138, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27722559

RESUMEN

Luminescent porous coordination polymers, cage-containing chains [Pb5(L1)6(N3)2(OH)2]n (1) and 1-D double helical chains [Pb(L2)(N3)]n (2) with 1-D channels were prepared by solvothermal reactions. These polymers can take up metal ions and induce different luminescence responses depending on the metal ions.

18.
Chem Commun (Camb) ; 48(8): 1102-4, 2012 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-22064846

RESUMEN

cis-[Ru(2,9-Me(2)phen)(2)(OH(2))(2)](2+) reacts readily with chlorite at room temperature at pH 4.9 and 6.8. The ruthenium(II) complex can catalyze the disproportionation of chlorite to chlorate and chloride, the oxidation of chlorite to chlorine dioxide, as well as the oxidation of alcohols by chlorite.


Asunto(s)
Alcoholes/química , Cloruros/química , Compuestos de Cloro/química , Compuestos Organometálicos/química , Óxidos/química , Piridinas/química , Rutenio/química , Catálisis , Oxidación-Reducción
19.
Chem Commun (Camb) ; 46(40): 7575-7, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20848041

RESUMEN

Reaction of Ru(VI)≡N complexes bearing 8-quinolinolato ligands with NCCH(2)CN/piperidine and NaTCNE afford novel ruthenium(ii) dicyanoimine and diimine/imino-oxazolone complexes, respectively.

20.
J Am Chem Soc ; 129(44): 13646-52, 2007 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17929922

RESUMEN

The kinetics of the oxidation of trans-[RuIV(tmc)(O)(solv)]2+ to trans-[RuVI(tmc)(O)2]2+ (tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic tertiary amine ligand; solv = H2O or CH3CN) by MnO4- have been studied in aqueous solutions and in acetonitrile. In aqueous solutions the rate law is -d[MnO4]/dt = kH2O[RuIV][MnO4-] = (kx + (ky)/(Ka)[H+])[RuIV][MnO4-], kx = (1.49 +/- 0.09) x 101 M-1 s-1 and ky = (5.72 +/- 0.29) x 104 M-1 s-1 at 298.0 K and I = 0.1 M. The terms kx and ky are proposed to be the rate constants for the oxidation of RuIV by MnO4- and HMnO4, respectively, and Ka is the acid dissociation constant of HMnO4. At [H+] = I = 0.1 M, DeltaH and DeltaS are (9.6 +/- 0.6) kcal mol-1 and -(18 +/- 2) cal mol-1 K-1, respectively. The reaction is much slower in D2O, and the deuterium isotope effects are kx/kxD = 3.5 +/- 0.1 and ky/kyD = 5.0 +/- 0.3. The reaction is also noticeably slower in H218O, and the oxygen isotope effect is kH216O/kH218O = 1.30 +/- 0.07. 18O-labeled studies indicate that the oxygen atom gained by RuIV comes from water and not from KMnO4. These results are consistent with a mechanism that involves initial rate-limiting hydrogen-atom abstraction by MnO4- from coordinated water on RuIV. In acetonitrile the rate law is -d[MnO4-]/dt = kCH3CN[RuIV][MnO4-], kCH3CN = 1.95 +/- 0.08 M-1 s-1 at 298.0 K and I = 0.1 M. DeltaH and DeltaS are (12.0 +/- 0.3) kcal mol-1 and -(17 +/- 1) cal mol-1 K-1, respectively. 18O-labeled studies show that in this case the oxygen atom gained by RuIV comes from MnO4-, consistent with an oxygen-atom transfer mechanism.


Asunto(s)
Hidrógeno/química , Compuestos Organometálicos/química , Oxígeno/química , Permanganato de Potasio/química , Rutenio/química , Cinética , Estructura Molecular , Oxidación-Reducción , Sensibilidad y Especificidad , Solventes/química , Espectrofotometría Infrarroja/métodos , Estereoisomerismo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA