Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 2847-2857, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37606696

RESUMEN

Moonmilk is a cave deposit that was used for medical and cosmetic purposes and has lately raised interest for its antimicrobial potential. We studied five moonmilk samples from four caves with different microclimatic conditions, two temperate in north-western and northern Romania (Ferice, Fața Apei, and Izvorul Taușoarelor caves) and one tropical in Minas Gerais, Brazil (Nestor Cave). The physicochemical and mineralogical analyses confirmed the presence of calcite and dolomite as the main phase in the moonmilk. A 16S rRNA gene-based metabarcoding approach showed the most abundant bacteria phyla Proteobacteria, GAL15, Actinobacteriota, and Acidobacteriota. The investigated caves differed in the dominant orders of bacteria, with the highest distance between the Romanian and Nestor Cave samples. Climate and, implicitly, the soil microbiome can be responsible for some differences we found between all the samples. However, other factors can be involved in shaping the moonmilk microbiome, as differences were found between samples in the same cave (Ferice). In our five moonmilk samples, 1 phylum, 70 orders (~ 36%), and 252 genera (~ 47%) were unclassified, which hints at the great potential of cave microorganisms for future uses.


Asunto(s)
Cuevas , Microbiota , Cuevas/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Proteobacteria/genética
2.
Atmos Environ (1994) ; 297: 119594, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36686285

RESUMEN

A mobile monitoring campaign was conducted (by bicycle) to assess the black carbon (BC) concentrations in Cluj-Napoca city, Romania, in 2020, before, during and after COVID-19 lock-down. Over the entire study period, the BC concentrations ranged between 1.0 and 25.9 µg/m³ (averaged per street section and period characterized by different traffic conditions). Marked spatial and temporal differences were observed. Observed differences in BC concentrations between locations are attributed to traffic intensities, with average BC concentrations, under normal circumstances, of 6.6-14.3 µg/m³ at roads with high to intense traffic, compared to 2.8-3.1 µg/m³ at areas with reduced traffic, such as residential areas, parks and pedestrian streets. The COVID-19 measures impacted traffic volumes, and hence average BC concentrations decreased from 5.9 µg/m³ to 3.0 µg/m³ during lock-down and in a lower extent to 3.4 µg/m³ and 4.4 µg/m³ in post-lockdown periods with reduced and more normalized traffic. Two approaches to account for variations in background concentrations when comparing different situations in time are assessed. Subtracting background concentrations that are measured at background sites along the monitoring route is an appropriate method to assess spatio-temporal differences in concentrations. A reduction of about 1-2 µg/m³ was observed for the streets with low to medium traffic, and up to 6 µg/m³ at high traffic locations under lockdown. The approach presented in this study, using mobile measurements, is useful to understand the personal exposure to BC along the roads in different seasons and the influence of traffic reduction on BC pollution during prolonged restrictions. All these will support policymakers to reduce pollution and achieve EU directives targets and WHO recommendations.

3.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298654

RESUMEN

CoFe2O4 is a promising functional material for various applications. The impact of doping with different cations (Ag+, Na+, Ca2+, Cd2+, and La3+) on the structural, thermal, kinetics, morphological, surface, and magnetic properties of CoFe2O4 nanoparticles synthesized via the sol-gel method and calcined at 400, 700 and 1000 °C is investigated. The thermal behavior of reactants during the synthesis process reveals the formation of metallic succinates up to 200 °C and their decomposition into metal oxides that further react and form the ferrites. The rate constant of succinates' decomposition into ferrites calculated using the isotherms at 150, 200, 250, and 300 °C decrease with increasing temperature and depend on the doping cation. By calcination at low temperatures, single-phase ferrites with low crystallinity were observed, while at 1000 °C, the well-crystallized ferrites were accompanied by crystalline phases of the silica matrix (cristobalite and quartz). The atomic force microscopy images reveal spherical ferrite particles covered by an amorphous phase, the particle size, powder surface area, and coating thickness contingent on the doping ion and calcination temperature. The structural parameters estimated via X-ray diffraction (crystallite size, relative crystallinity, lattice parameter, unit cell volume, hopping length, density) and the magnetic parameters (saturation magnetization, remanent magnetization, magnetic moment per formula unit, coercivity, and anisotropy constant) depend on the doping ion and calcination temperature.


Asunto(s)
Nanocompuestos , Dióxido de Silicio , Dióxido de Silicio/química , Cinética , Fenómenos Magnéticos , Cationes
4.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513220

RESUMEN

The photosynthetic pigments, protein, macro and microelements concentrations, and fatty acids composition of Salvinia natans, a free-floating aquatic plant, were analyzed after exposure to Hoagland nutrient solution containing 1, 3, and 5 mg/L Li. The Li content of Salvinia natans grew exponentially with the Li concentration in the Hoagland nutrient solution. The exposure to Li did not induce significant changes in Na, Mg, K, Cu, and Zn content but enhanced the Ba, Cr, Mn, Ni and Mo absorption in Salvinia natans. The most abundant fatty acids determined in oils extracted from Salvinia natans were C16:0, C18:3(n6), C18:2(n6), and C18:3(n3). The photosynthetic pigments did not change significantly after exposure to Li. In contrast, chlorophyll and protein content decreased, whilst monounsaturated and polyunsaturated fatty acids content increased after the exposure to 1 mg/L Li. The results indicated that Salvinia natans exposed to low Li concentrations may be a good source of minerals, omega 6 and omega 3.


Asunto(s)
Helechos , Tracheophyta , Litio , Ácidos Grasos/metabolismo , Plantas
5.
Environ Monit Assess ; 195(12): 1554, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036722

RESUMEN

Mercury (Hg) is a toxic, non-essential element for living organisms, frequently present in high concentrations in soils from industrial areas. The total, dissolved, and labile Hg concentrations in garden soils and their accumulation in edible vegetables (onion, garlic, lettuce, and parsley) grown on contaminated soils in localities situated a former mining area were evaluated. The labile Hg fraction was estimated by diffusive gradient in thin films (DGT). The soil-to-vegetable transfer factors, as well as the health risk by exposure to Hg, were calculated based on the labile Hg concentration in soil. The total Hg concentration in soil varied widely (0.11-3.77 mg kg-1), Hg in soil solution ranged between 2.14 and 20.2 µg L-1 and labile Hg between 1.13 and 18.6 µg L-1. About 36-96% (84% on average) of the Hg concentration in soil solution was found in labile form. Multivariate analysis revealed significant correlations between the labile Hg concentration in soil and Hg accumulated in vegetables. The hazard indices showed that, although the study area is affected by legacy pollution, exposure to soil and consumption of locally grown vegetables do not pose health risks.


Asunto(s)
Mercurio , Contaminantes del Suelo , Mercurio/análisis , Verduras , Suelo , Jardines , Disponibilidad Biológica , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Minería
6.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955614

RESUMEN

The structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) type ferrites produced by thermal decomposition at 700 and 1000 °C were studied. The thermal analysis revealed that the ferrites are formed at up to 350 °C. After heat treatment at 1000 °C, single-phase ferrite nanoparticles were attained, while after heat treatment at 700 °C, the CoFe2O4 was accompanied by Co3O4 and the MnFe2O4 by α-Fe2O3. The particle size of the spherical shape in the nanoscale region was confirmed by transmission electron microscopy. The specific surface area below 0.5 m2/g suggested a non-porous structure with particle agglomeration that limits nitrogen absorption. By heat treatment at 1000 °C, superparamagnetic CoFe2O4 nanoparticles and paramagnetic NiFe2O4, MnFe2O4, CuFe2O4 and ZnFe2O4 nanoparticles were obtained.


Asunto(s)
Cobalto , Magnetismo , Cobalto/química , Fenómenos Magnéticos , Óxidos , Zinc/química
7.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328516

RESUMEN

This paper presents the influence of Mn2+ substitution by Ni2+ on the structural, morphological and magnetic properties of Mn1-xNixFe2O4@SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) obtained by a modified sol-gel method. The Fourier transform infrared spectra confirm the formation of a SiO2 matrix and ferrite, while the X-ray diffraction patterns show the presence of poorly crystalline ferrite at low annealing temperatures and highly crystalline mixed cubic spinel ferrite accompanied by secondary phases at high annealing temperatures. The lattice parameters gradually decrease, while the crystallite size, volume, and X-ray density of Mn1-xNixFe2O4@SiO2 NCs increase with increasing Ni content and follow Vegard's law. The saturation magnetization, remanent magnetization, squareness, magnetic moment per formula unit, and anisotropy constant increase, while the coercivity decreases with increasing Ni content. These parameters are larger for the samples with the same chemical formula, annealed at higher temperatures. The NCs with high Ni content show superparamagnetic-like behavior, while the NCs with high Mn content display paramagnetic behavior.


Asunto(s)
Magnetismo , Dióxido de Silicio , Compuestos Férricos , Fenómenos Magnéticos , Compuestos de Manganeso , Dióxido de Silicio/química , Difracción de Rayos X
8.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430650

RESUMEN

The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparticles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal treatment, were investigated. The thermal analysis confirmed the formation of metal succinate precursors up to 200 °C, their decomposition to metal oxides and the formation of Ni-Zn-Co ferrites up to 500 °C. The crystalline phases, crystallite size and lattice parameter were determined based on X-ray diffraction patterns. Transmission electron microscopy revealed the shape, size, and distribution pattern of the ferrite nanoparticles. The particle sizes ranged between 34 and 40 nm. All the samples showed optical responses in the visible range. The best sonophotocatalytic activity against the rhodamine B solution under visible irradiation was obtained for Ni0.3Zn0.3Co0.4Fe2O4@SiO2.


Asunto(s)
Nanopartículas , Níquel , Níquel/química , Dióxido de Silicio , Nanopartículas/química , Zinc/química
9.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431882

RESUMEN

This study's objective was to separate cellulose, hemicellulose, and lignin after high-pressure supercritical carbon dioxide pretreatment for further valorization. The study investigated the supercritical carbon dioxide pretreatment of apple orchard waste at temperatures of 160-200 °C, for 15-45 min, at a pressure of 10 MPa. Response Surface Methodology (RSM) was used to optimize the supercritical process and to improve its efficiency. The change of functional groups during different pretreatment conditions was examined by Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirmed the structural changes in the biomass structure before and after pretreatment. A new ultra-high performance liquid chromatography (UHPLC) coupled with an evaporative light scattering detector (ELSD) method was developed and validated for the determination of carbohydrates in the liquid fraction that resulted after pretreatment. The estimated uncertainty of the method ranged from 16.9 to 20.8%. The pre-treatment of high-pressure supercritical CO2 appears to be an effective and promising technique for the recovery of sugars and secondary by-products without the use of toxic solvents.


Asunto(s)
Dióxido de Carbono , Malus , Incertidumbre , Carbohidratos , Lignina , Hexosas
10.
Environ Microbiol ; 23(7): 3523-3540, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-31894632

RESUMEN

Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.


Asunto(s)
Bacterias , Lagos , Bacterias/genética , Cloruro de Sodio , Azufre , Microbiología del Agua
11.
Molecules ; 26(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946509

RESUMEN

The simultaneous determination of chemical vapor-generating elements involving derivatization is difficult even by inductively coupled plasma optical emission spectrometry or mass spectrometry. This study proposes a new direct liquid microsampling method for the simultaneous determination of As, Bi, Se, Te, Hg, Pb, and Sn, using a fully miniaturized set-up based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. The method is cost-effective, free from non-spectral interference, and easy to run by avoiding derivatization. The method involves the vaporization of analytes from the 10 µL sample and recording of episodic spectra generated in low-power (15 W) and low-Ar consumption (150 mL min-1) plasma microtorch interfaced with low-resolution microspectrometers. Selective vaporization at 1300 °C ensured the avoidance of non-spectral effects and allowed the use of external calibration. Several spectral lines for each element even in the range 180-210 nm could be selected. Generally, this spectral range is examined with large-scale instrumentation. Even in the absence of derivatization, the obtained detection limits were low (0.02-0.75 mg kg-1) and allowed analysis of environmental samples, such as cave and river sediments. The recovery was in the range of 86-116%, and the accuracy was better than 10%. The method is of general interest and could be implemented on any miniaturized or classical laboratory spectrometric instrumentation.

12.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833878

RESUMEN

The aim of the study was to develop the hydrogeochemical profiling of caves based on the elemental composition of water and silty soil samples and a multivariate statistical analysis. Major and trace elements, including rare earths, were determined in the water and soil samples. The general characteristics of water, anions content, inorganic and organic carbon fractions and nitrogen species (NO3- and NH4+) were also considered. The ANOVA-principal component analysis (PCA) and two-way joining analysis were applied on samples collected from Cloșani Cave, Romania. The ANOVA-PCA revealed that the hydrogeochemical characteristics of Ca2+-HCO3- water facies were described by five factors, the strongest being associated with water-carbonate rock interactions and the occurrence of Ca, Mg and HCO3- (43.4%). Although organic carbon fractions have a lower influence (20.1%) than inorganic ones on water characteristics, they are involved in the chemical processes of nitrogen and of the elements involved in redox processes (Fe, Mn, Cr and Sn). The seasonal variability of water characteristics, especially during the spring, was observed. The variability of silty soil samples was described by four principal components, the strongest influence being attributed to rare earth elements (52.2%). The ANOVA-PCA provided deeper information compared to Gibbs and Piper diagrams and the correlation analysis.

13.
Molecules ; 25(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486499

RESUMEN

This study presents the effect of thermal treatment (450, 500, 600, 750, and 800 °C) on a Romanian clinoptilolite-rich natural zeolite, along with the interaction of raw and thermally treated zeolites with simulated gastric fluid (SGF, pH = 1.20) at different zeolite to SGF ratios and exposure times. The zeolites were characterized using gravimetric analysis, X-ray fluorescence, powder X-ray diffraction (pXRD), and Fourier transform infrared (FT-IR) spectroscopy. The chemical composition of the zeolite subjected to thermal treatment did not change significantly with the increase of temperature. Structural changes were not detectable by pXRD and FT-IR analyses in the zeolites thermally treated up to 500 °C, while above 600 °C a gradual structural breakdown of zeolite was noticed. At high temperatures, the broad, low-intensity peaks in pXRD patterns indicated the partial amorphization of the crystalline structure. The pXRD and FT-IR analyses showed that the crystalline structure of zeolites remains unaffected after their exposure to SGF. The results revealed that the amounts of Fe, Na, Mg, K, Ca, Al, and Si released depends mainly on the zeolite to SGF ratio, and to a lower extent on the thermal treatment temperature, while the exposure time of 1 to 7 days does not have a significant impact on the elements released in SGF.


Asunto(s)
Líquidos Corporales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estómago/fisiología , Zeolitas/química , Animales , Calor , Humanos , Concentración de Iones de Hidrógeno , Difracción de Rayos X
14.
Molecules ; 25(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503355

RESUMEN

In this paper, the production of a second-generation bioethanol from lignocellulosic vineyard cutting wastes was investigated in order to define the optimal operating conditions of the autohydrolysis pretreatment, chlorite delignification and simultaneous saccharification and fermentation (SSF). The autohydrolysis of vine-shoot wastes resulted in liquors containing mainly a mixture of monosaccharides, degradation products and spent solids (rich in cellulose and lignin), with potential utility in obtaining valuable chemicals and bioethanol. The autohydrolysis of the vine-shoot wastes was carried out at 165 and 180 °C for 10 min residence time, and the resulted solid and liquid phases composition were analysed. The resulted liquid fraction contained hemicellulosic sugars as a mixture of alpha (α) and beta (ß) sugar anomers, and secondary by-products. The solid fraction was delignified using the sodium chlorite method for the separation of lignin and easier access of enzymes to the cellulosic sugars, and then, converted to ethanol by the SSF process. The maximum bioethanol production (6%) was obtained by autohydrolysis (165 °C), chlorite delignification and SSF process at 37 °C, 10% solid loading, 72 h. The principal component analysis was used to identify the main parameters that influence the chemical compositions of vine-shoot waste for different varieties.


Asunto(s)
Biocombustibles , Cloruros/química , Etanol/metabolismo , Fermentación , Residuos Industriales/análisis , Lignina/química , Polisacáridos/química , Vitis/química , Hidrólisis , Polisacáridos/metabolismo
15.
J Environ Sci Health B ; 55(4): 329-341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31793375

RESUMEN

Closed lakes located in urban parks act as sinks of organochlorine pesticides (OCPs), which have been used, for decades, as insecticides, herbicides and fungicides. The closed lakes from Bucharest, Romania, are periodically managed to prevent eutrophication and accumulation of pollutants. However, it is not known if these practices reduce or enhance the legacy pollution with OCPs. The aim of this study was to explore the spatial variation of OCPs in closed lakes. The total concentration of OCPs in water and sediments ranged between 0.0176 and 37.1 µg/L, and between 122 to 1,890 ng/g, respectively. The concentrations of OCPs were compared with the consensus-based sediment quality guidelines (SQGs) in order to evaluate the ecological risks of sediments. The highest potential adverse effects were associated with γ-HCH exposure. Periodical draining and dredging of lakes lead to the resuspension of contaminants, increasing pesticide bioavailability and accumulation in sediments. In addition, we observed that fluorescent dissolved organic matter (DOM) might influence the OCPs cycle. The quantity and character of fluorescent DOM can provide further insight into OCPs degradation. Also, this study may help urban planners to determine the state of urban waters and to find the best solution for water management.


Asunto(s)
Hidrocarburos Clorados/análisis , Lagos/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Ciudades , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Hexaclorociclohexano/análisis , Concentración de Iones de Hidrógeno , Rumanía
16.
Environ Monit Assess ; 192(1): 59, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863207

RESUMEN

Urban lakes represent the most extensive water bodies in cities and provide blue ecosystem services, by retaining pollutants, offering cultural services, and mitigating climate change. Human activities threaten to decrease the supply of ecosystem services associated with urban lakes. Exorheic lakes play an essential role in reducing and changing the characteristics of pollutants and organic matter along the environmental continuum. This study aims to gain further understanding on the distribution and fate of organochlorine pesticides (OCPs) in relation to fluorescent dissolved organic matter (DOM) within an exorheic lake system, located along Colentina river, Bucharest. Results indicated a historical usage of HCHs, which were present in lake water and sediment samples, in concentrations exceeding the regulatory limits, with potential eco-toxicity on aquatic biota. Decades of intense applications along the river, before OCPs ban, led to their accumulation in sediments and their re-mobilization, each year, after the lakes were drained, dredged, and refilled. Fluorescence measurements revealed that DOM accumulated in certain lakes due to wastewater discharges, and surface runoff, but decreased towards the end of the exorheic lakes through dilution, sedimentation, and biodegradation. The results also showed that fluorescent DOM may have a substantial impact on OCPs cycle in urban lakes and may help to determine the conditions and effectiveness of removing OCPs from water and sediments. These issues contribute to the decrease of ecosystem services supply associated with urban lakes, having multiple hidden consequences on the urban environment.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hidrocarburos Clorados/análisis , Lagos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , China , Ciudades , Ecosistema , Humanos , Ríos/química
17.
Environ Monit Assess ; 188(9): 521, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27526046

RESUMEN

This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses.


Asunto(s)
Agua Potable/normas , Monitoreo del Ambiente/métodos , Aguas Minerales/normas , Abastecimiento de Agua/normas , Ciudades , Agua Potable/análisis , Agua Potable/química , Aguas Minerales/análisis , Rumanía
18.
Environ Monit Assess ; 187(8): 489, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26148689

RESUMEN

Leachate from a closed landfill used for co-disposal of municipal and tannery waste was submitted to coagulation treatment, air stripping, adsorption on granular activated carbon, and Fenton oxidation with the aim to reduce toxicity of the leachate. Optimal operational conditions for each process were identified. The performance of the treatment was monitored by determination of organic matter (COD, DOC, BOD5), inorganic components (N-NH4(+), Cl(-), alkalinity, metals), organic compounds (BTEX, PAHs, PCBs, OCPs) while changes in toxicity were followed by multiple toxicity tests. Among the applied treatment techniques, adsorption on granular activated carbon was the most efficient method for removal of organic matter and metals while air stripping was the most efficient for removal of N-NH4(+) and reduction of toxicity. Lower reduction of organic matter content and toxicity was obtained during coagulation treatment. Fenton oxidation was effective for removal of COD; however, it negatively affected toxicity reduction. The combination of adsorption on granular activated carbon and air stripping led to an appreciable reduction of organic and inorganic pollutants and to leachate detoxification. Application of bioassays was helpful for assessing suitability of treatment methods and demonstrated that they are, together with physicochemical parameters, an indispensable part for monitoring of treatment efficiency.


Asunto(s)
Monitoreo del Ambiente/métodos , Compuestos Orgánicos/toxicidad , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos , Adsorción , Carbón Orgánico/química , Floculación , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Orgánicos/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/normas
19.
Anal Methods ; 16(28): 4807-4816, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38963789

RESUMEN

The determination of rare earth element (REE) content in different natural minerals is of high interest due to their extensive use in modern and sustainable technologies. The REEs occurring in natural zeolites are specific to each deposit. This study presents the validation and evaluation of the measurement uncertainty for the determination of REEs (Ce, Dy, Er, Eu, Gd, La, Lu, Nd, Pr, Sm, Y, and Yb) in natural zeolites using microwave-assisted acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES) after diffusive gradients in thin-film preconcentration. A mixture of HNO3 : HCl : HF of 3 : 9 : 2 (v/v/v) and microwave digestion provided suitable recoveries for the analysis of two certified reference materials, CRM BCS-CRM 375/1 and CRM OREAS 460. Good linearity over the calibration range of 0-2 µg mL-1, with correlation coefficients of 0.9995-1.0000, was obtained for each REE by ICP-OES. The limits of quantification (LOQS), calculated considering the instrumental LOQs and the sample preparation by microwave digestion, were in the range of 0.20-0.60 mg kg-1. A supplementary step of preconcentration/matrix separation based on the passive sampling by diffusive gradients in thin-films (DGT) technique improved the LOQs by about 20 times after three days of passive accumulation, allowing the measurement of the concentrations of all studied REEs in natural zeolite samples. The proposed methodology is a suitable approach for the measurement of REEs at low concentrations in natural zeolite samples by ICP-OES, and it can be extended to other geological samples. The measurement uncertainty was calculated based on the validation data. The proposed method provides reliable results for the measurement of REEs in natural zeolites and was used to measure the specific concentrations of REEs in natural zeolite samples from three Romanian quarries. The REE concentration can be used as a fingerprint for each deposit.

20.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37513140

RESUMEN

This work presents the effect of monovalent (Ag+, Na+), divalent (Ca2+, Cd2+), and trivalent (La3+) metal ion doping and annealing temperature (500, 800, and 1200 °C) on the structure, morphology, and magnetic properties of MnFe2O4/SiO2 ceramic nanocomposites synthesized via sol-gel method. Fourier-transform infrared spectroscopy confirms the embedding of undoped and doped MnFe2O4 nanoparticles in the SiO2 matrix at all annealing temperatures. In all cases, the X-ray diffraction (XRD) confirms the formation of MnFe2O4. In the case of undoped, di-, and trivalent metal-ion-doped gels annealed at 1200 °C, three crystalline phases (cristobalite, quartz, and tridymite) belonging to the SiO2 matrix are observed. Doping with mono- and trivalent ions enhances the nanocomposite's structure by forming single-phase MnFe2O4 at low annealing temperatures (500 and 800 °C), while doping with divalent ions and high annealing temperature (1200 °C) results in additional crystalline phases. Atomic force microscopy (AFM) reveals spherical ferrite particles coated by an amorphous layer. The AFM images showed spherical particles formed due to the thermal treatment. The structural parameters calculated by XRD (crystallite size, crystallinity, lattice constant, unit cell volume, hopping length, density, and porosity) and AFM (particle size, powder surface area, and thickness of coating layer), as well as the magnetic parameters (saturation magnetization, remanent magnetization, coercivity, and anisotropy constant), are contingent on the doping ion and annealing temperature. By doping, the saturation magnetization and magnetocrystalline anisotropy decrease for gels annealed at 800 °C, but increase for gels annealed at 1200 °C, while the remanent magnetization and coercivity decrease by doping at both annealing temperatures (800 and 1200 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA