Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38490728

RESUMEN

Validated glass bead sterilization protocols to effectively sterilize rodent surgical instruments after bacterial exposure (for example, cecal contamination) are lacking. To refine current approaches, we added either a multienzyme detergent, neutral pH detergent, or chlorhexidine scrub step before glass bead sterilization of forceps or needle drivers exposed to cecal contents. We exposed sets of forceps and needle drivers to cecal contents, which were then air dried for 3 min. Immediately after, the instruments were wiped several times with a clean, dry paper towel. The contaminated tips were soaked in either a multienzyme or neutral pH detergent (t = 5 min), chlorhexidine scrub (t = 2 min), or no pretreatment solution. To further increase debris removal, instruments (from all groups) were brushed using a clean toothbrush. The nonpretreatment instruments were briefly soaked in saline before brushing. After being rinsed with sterile water, all instruments were exposed to a glass bead sterilizer for 60 s at 500 °F (260 °C). Sets were then swabbed for bacterial culturing. Swabs were plated onto either sheep blood agar (n = 23) or chocolate agar (n = 20) for aerobic culturing or Brucella agar (n = 20) for anaerobic culturing. A subset of instruments was sampled to determine organic material presence after treatment using an ATP luminometer (n = 21). Multiple agar types and bioluminescence were used to more deeply evaluate tool sterility and to differentiate the relative effectiveness of each protocol. From the saline group, only one pair of forceps yielded growth on Brucella agar, and 2 pairs yielded growth on chocolate agar. No other bacterial growth was observed. The use of a pretreatment agent also lowered overall organic contamination levels in needle drivers compared with using only saline. These results indicate that brushing instruments to mechanically remove debris from instruments is paramount to ensure sterility. However, a best practice would be to also use one of the pretreatment options used in this study.

2.
Macromol Biosci ; 24(3): e2300393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37904644

RESUMEN

Achieving surgical success in orthopedic patients with metabolic disease remains a substantial challenge. Diabetic patients exhibit a unique tissue microenvironment consisting of high levels of reactive oxygen species (ROS), which promotes osteoclastic activity and leads to decreased bone healing. Alternative solutions, such as synthetic grafts, incorporating progenitor cells or growth factors, can be costly and have processing constraints. Previously, the potential for thiol-methacrylate networks to sequester ROS while possessing tunable mechanical properties and degradation rates has been demonstrated. In this study, the ability to fabricate thiol-methacrylate interconnected porous scaffolds using emulsion templating to create monoliths with an average porosity of 97.0% is reported. The average pore sizes of the scaffolds range from 27 to 656 µm. The scaffolds can sequester pathologic levels of ROS via hydrogen peroxide consumption and are not impacted by sterilization. Subcutaneous implantation shows no signs of acute toxicity. Finally, in a 6-week bilateral calvarial defect model in Zucker diabetic fatty rats, ROS scaffolds increase new bone volume by 66% over sham defects. Histologic analysis identifies woven bone infiltration throughout the scaffold and neovascularization. Overall, this study suggests that porous thiol-methacrylate scaffolds may improve healing for bone grafting applications where high levels of ROS hinder bone growth.


Asunto(s)
Diabetes Mellitus , Polímeros , Estirenos , Andamios del Tejido , Humanos , Ratas , Animales , Ingeniería de Tejidos , Especies Reactivas de Oxígeno , Ratas Zucker , Porosidad , Metacrilatos , Compuestos de Sulfhidrilo
3.
J Comp Pathol ; 201: 53-56, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36709728

RESUMEN

Reports of compound odontomas in rats are very rare. A 14-month-old adult male Sprague Dawley rat was found to have a hard mass associated with the caudal aspect of the left mandible. After 2 weeks of observation, the rat was euthanized due to the mass growing significantly in size and the rat losing >20% of its body weight. Grossly, the mass was well-circumscribed, 3.7 × 3 × 1.2 cm, hard and heterogeneously coloured white, tan and red. The mass was restricted to the mandibular bone and did not involve surrounding subcutaneous tissue. On cut surface, the mass was a similar colour and brittle. Histologically, there were numerous proto-teeth embedded in ossified stroma. Each proto-tooth had a central mesenchyme pulp surrounded by columnar odontoblasts and dentine matrix. The dentine was often bordered by enamel matrix, which was occasionally bounded by ameloblasts. These histological findings were consistent with a compound odontoma. This is the first report of a spontaneous compound odontoma in the caudal mandible of a rat.


Asunto(s)
Odontoma , Enfermedades de los Roedores , Masculino , Ratas , Animales , Odontoma/veterinaria , Ratas Sprague-Dawley , Mandíbula/patología
4.
J Food Prot ; 85(8): 1221-1231, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653626

RESUMEN

ABSTRACT: This study was conducted to evaluate the association between a therapeutic dose of tulathromycin for bovine respiratory disease in beef steers and the antimicrobial and multidrug resistance profiles of the gastrointestinal tract commensals Escherichia coli and Enterococcus spp. and the foodborne pathogens Salmonella enterica and Campylobacter spp. isolated from fecal samples. Individual fecal samples were collected on days 0, 14, and 28 from 70 beef steers that were housed in a single pen and had been treated or not treated with tulathromycin. Samples were cultured for bacterial isolation, and isolates were tested for antimicrobial susceptibility with the broth microdilution method to determine the MICs of clinically relevant antimicrobials used in both human and veterinary medicine. Generalized linear mixed effects models were fitted to estimate the prevalence of the bacterial species and the prevalence of resistant isolates over time and between treated and nontreated cattle and of multidrug-resistant isolates. Model-adjusted mean prevalences of E. coli, Enterococcus spp., S. enterica, and Campylobacter spp. were 99.5, 85.9, 1.5, and 17.7%, respectively. The prevalence of erythromycin-resistant Enterococcus spp. was significantly higher on day 14 (59.7%) than on day 28 (22.2%). A higher prevalence of erythromycin-resistant Enterococcus spp. was found in samples from treated (59.3%) than in samples from nontreated (27.6%) animals. Multidrug resistance (three or more antimicrobial classes) was observed in 8.4% of E. coli isolates and 62.7% of Enterococcus isolates. The administration of tulathromycin was significantly associated with an increased prevalence of erythromycin-resistant Enterococcus spp. isolates.


Asunto(s)
Antiinfecciosos , Enfermedades de los Bovinos , Salmonella enterica , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bovinos , Enfermedades de los Bovinos/microbiología , Disacáridos , Farmacorresistencia Bacteriana , Enterococcus , Eritromicina/farmacología , Eritromicina/uso terapéutico , Escherichia coli , Heces/microbiología , Compuestos Heterocíclicos , Humanos , Pruebas de Sensibilidad Microbiana
5.
Cell Rep ; 23(7): 2142-2156, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768211

RESUMEN

Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enfermedades Transmisibles/genética , Enfermedades Transmisibles/inmunología , MicroARNs/metabolismo , Animales , Diferenciación Celular , Proliferación Celular/genética , Enfermedad Crónica , Enfermedades Transmisibles/patología , Antígeno 2 Relacionado con Fos/metabolismo , Regulación de la Expresión Génica , Subgrupos Linfocitarios/inmunología , Ratones Endogámicos C57BL , MicroARNs/genética , Fenotipo , Factores de Tiempo , Factor de Transcripción AP-1/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA