RESUMEN
Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.
Asunto(s)
Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias/inmunología , Línea Celular Tumoral , Células Th17/inmunología , Inmunoterapia/métodos , Proteínas con Dominio LIM/metabolismo , Adenosina Trifosfatasas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , FemeninoRESUMEN
Deciphering the composition of the tumor microenvironment (TME) is critical for understanding tumorigenesis and to design immunotherapies. In the present study, we mapped genetic effects on cell-type proportions using single-cell and bulk RNA sequencing data, identifying 3,494 immunity quantitative trait loci (immunQTLs) across 23 cancer types from The Cancer Genome Atlas. Functional annotation revealed regulatory potential and we further assigned 1,668 genes that regulate TME composition. We constructed a combined immunQTL map by integrating data from European and Chinese colorectal cancer (CRC) samples. A polygenic risk score that incorporates these immunQTLs and hits on a genome-wide association study outperformed in CRC risk stratification within 447,495 multiethnic individuals. Using large-scale population cohorts, we identified that the immunQTL rs1360948 is associated with CRC risk and prognosis. Mechanistically, the rs1360948-G-allele increases CCL2 expression, recruiting regulatory T cells that can exert immunosuppressive effects on CRC progression. Blocking the CCL2-CCR2 axis enhanced anti-programmed cell death protein 1 ligand therapy. Finally, we have established a database (CancerlmmunityQTL2) to serve the research community and advance our understanding of immunogenomic interactions in cancer pathogenesis.
Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Linfocitos T Reguladores/inmunología , Regulación Neoplásica de la Expresión Génica , Pronóstico , Animales , Ratones , Predisposición Genética a la Enfermedad , Análisis de la Célula IndividualRESUMEN
Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.
Asunto(s)
Microglía , Factores de Transcripción , Animales , Ratones , Sitios de Unión , ADN , Ratones Noqueados , Microglía/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.
Asunto(s)
Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Transcriptoma/genética , Animales , Línea Celular , Femenino , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Transducción Genética/métodosRESUMEN
Systematic characterizations of adipose regulatory T (Treg) cell subsets and their phenotypes remain uncommon. Using single-cell ATAC-sequencing and paired single-cell RNA and T cell receptor (TCR) sequencing to map mouse adipose Treg cells, we identified CD73hiST2lo and CD73loST2hi subsets with distinct clonal expansion patterns. Analysis of TCR-sharing data implied a state transition between CD73hiST2lo and CD73loST2hi subsets. Mechanistically, we revealed that insulin signaling occurs through a HIF-1α-Med23-PPAR-γ axis to drive the transition of CD73hiST2lo into a CD73loST2hi adipose Treg cell subset. Treg cells deficient in insulin receptor, HIF-1α or Med23 have decreased PPAR-γ expression that in turn promotes accumulation of CD73hiST2lo adipose Treg cells and physiological adenosine production to activate beige fat biogenesis. We therefore unveiled a developmental trajectory of adipose Treg cells and its dependence on insulin signaling. Our findings have implications for understanding the dynamics of adipose Treg cell subsets in aged and obese contexts.
Asunto(s)
Tejido Adiposo/inmunología , Resistencia a la Insulina/inmunología , Insulina/metabolismo , Receptor de Insulina/metabolismo , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Tejido Adiposo/citología , Envejecimiento/inmunología , Animales , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Masculino , Complejo Mediador/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/inmunología , PPAR gamma/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/citologíaRESUMEN
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Asunto(s)
Antígenos de Diferenciación/biosíntesis , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Hepatocitos/metabolismo , Esferoides Celulares/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular Transformada , Células Hep G2 , Hepatocitos/trasplante , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hígado/lesiones , Hígado/metabolismo , Ratones Noqueados , Esferoides Celulares/trasplante , Factores de TiempoRESUMEN
Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.
Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADP/metabolismo , Transducción de SeñalRESUMEN
The heart, which is the first organ to develop, is highly dependent on its form to function1,2. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart. This approach also provided a spatial mapping of individual cells that enables illumination of their organization into cellular communities that form distinct cardiac structures. We discovered that many of these cardiac cell types further specified into subpopulations exclusive to specific communities, which support their specialization according to the cellular ecosystem and anatomical region. In particular, ventricular cardiomyocyte subpopulations displayed an unexpected complex laminar organization across the ventricular wall and formed, with other cell subpopulations, several cellular communities. Interrogating cell-cell interactions within these communities using in vivo conditional genetic mouse models and in vitro human pluripotent stem cell systems revealed multicellular signalling pathways that orchestrate the spatial organization of cardiac cell subpopulations during ventricular wall morphogenesis. These detailed findings into the cellular social interactions and specialization of cardiac cell types constructing and remodelling the human heart offer new insights into structural heart diseases and the engineering of complex multicellular tissues for human heart repair.
Asunto(s)
Tipificación del Cuerpo , Corazón , Miocardio , Animales , Humanos , Ratones , Corazón/anatomía & histología , Corazón/embriología , Cardiopatías/metabolismo , Cardiopatías/patología , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Hibridación Fluorescente in Situ , Modelos Animales , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de Expresión Génica de una Sola CélulaRESUMEN
Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.
Asunto(s)
Encéfalo , Cromatina , Análisis de la Célula Individual , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Corteza Cerebral/citología , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Aprendizaje Profundo , Elementos Transponibles de ADN/genética , Redes Reguladoras de Genes/genética , Neuronas/metabolismoRESUMEN
In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.
Asunto(s)
Transducción de Señal , Duración del Sueño , Transcripción Genética , Animales , Ratones , Regulación de la Expresión Génica , Fosforilación , Transducción de Señal/fisiología , Sueño de Onda Lenta/genética , Perfilación de la Expresión GénicaRESUMEN
The development of single-cell multi-omics technology has greatly enhanced our understanding of biology, and in parallel, numerous algorithms have been proposed to predict the protein abundance and/or chromatin accessibility of cells from single-cell transcriptomic information and to integrate various types of single-cell multi-omics data. However, few studies have systematically compared and evaluated the performance of these algorithms. Here, we present a benchmark study of 14 protein abundance/chromatin accessibility prediction algorithms and 18 single-cell multi-omics integration algorithms using 47 single-cell multi-omics datasets. Our benchmark study showed overall totalVI and scArches outperformed the other algorithms for predicting protein abundance, and LS_Lab was the top-performing algorithm for the prediction of chromatin accessibility in most cases. Seurat, MOJITOO and scAI emerge as leading algorithms for vertical integration, whereas totalVI and UINMF excel beyond their counterparts in both horizontal and mosaic integration scenarios. Additionally, we provide a pipeline to assist researchers in selecting the optimal multi-omics prediction and integration algorithm.
RESUMEN
Glutamate-gated kainate receptors are ubiquitous in the central nervous system of vertebrates, mediate synaptic transmission at the postsynapse and modulate transmitter release at the presynapse1-7. In the brain, the trafficking, gating kinetics and pharmacology of kainate receptors are tightly regulated by neuropilin and tolloid-like (NETO) proteins8-11. Here we report cryo-electron microscopy structures of homotetrameric GluK2 in complex with NETO2 at inhibited and desensitized states, illustrating variable stoichiometry of GluK2-NETO2 complexes, with one or two NETO2 subunits associating with GluK2. We find that NETO2 accesses only two broad faces of kainate receptors, intermolecularly crosslinking the lower lobe of ATDA/C, the upper lobe of LBDB/D and the lower lobe of LBDA/C, illustrating how NETO2 regulates receptor-gating kinetics. The transmembrane helix of NETO2 is positioned proximal to the selectivity filter and competes with the amphiphilic H1 helix after M4 for interaction with an intracellular cap domain formed by the M1-M2 linkers of the receptor, revealing how rectification is regulated by NETO2.
Asunto(s)
Proteínas de la Membrana/metabolismo , Receptores de Ácido Kaínico/metabolismo , Microscopía por Crioelectrón , Electrofisiología , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Modelos Moleculares , Unión Proteica , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/ultraestructura , Receptor de Ácido Kaínico GluK2RESUMEN
The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.
Asunto(s)
Cerebro/citología , Cerebro/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Atlas como Asunto , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/genética , Neuroglía/clasificación , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Previous studies have suggested that a single dose of rifampin has protective effects against leprosy in close contacts of patients with the disease. Rifapentine was shown to have greater bactericidal activity against Mycobacterium leprae than rifampin in murine models of leprosy, but data regarding its effectiveness in preventing leprosy are lacking. METHODS: We conducted a cluster-randomized, controlled trial to investigate whether single-dose rifapentine is effective in preventing leprosy in household contacts of patients with leprosy. The clusters (counties or districts in Southwest China) were assigned to one of three trial groups: single-dose rifapentine, single-dose rifampin, or control (no intervention). The primary outcome was the 4-year cumulative incidence of leprosy among household contacts. RESULTS: A total of 207 clusters comprising 7450 household contacts underwent randomization; 68 clusters (2331 household contacts) were assigned to the rifapentine group, 71 (2760) to the rifampin group, and 68 (2359) to the control group. A total of 24 new cases of leprosy occurred over the 4-year follow-up, for a cumulative incidence of 0.09% (95% confidence interval [CI], 0.02 to 0.34) with rifapentine (2 cases), 0.33% (95% CI, 0.17 to 0.63) with rifampin (9 cases), and 0.55% (95% CI, 0.32 to 0.95) with no intervention (13 cases). In an intention-to-treat analysis, the cumulative incidence in the rifapentine group was 84% lower than that in the control group (cumulative incidence ratio, 0.16; multiplicity-adjusted 95% CI, 0.03 to 0.87; P = 0.02); the cumulative incidence did not differ significantly between the rifampin group and the control group (cumulative incidence ratio, 0.59; multiplicity-adjusted 95% CI, 0.22 to 1.57; P = 0.23). In a per-protocol analysis, the cumulative incidence was 0.05% with rifapentine, 0.19% with rifampin, and 0.63% with no intervention. No severe adverse events were observed. CONCLUSIONS: The incidence of leprosy among household contacts over 4 years was lower with single-dose rifapentine than with no intervention. (Funded by the Ministry of Health of China and the Chinese Academy of Medical Sciences; Chinese Clinical Trial Registry number, ChiCTR-IPR-15007075.).
Asunto(s)
Leprostáticos , Lepra , Mycobacterium leprae , Rifampin , Humanos , Incidencia , Lepra/epidemiología , Lepra/prevención & control , Lepra/transmisión , Rifampin/administración & dosificación , Rifampin/análogos & derivados , Leprostáticos/administración & dosificación , Leprostáticos/uso terapéutico , Composición FamiliarRESUMEN
Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.
Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Humanos , Animales , Porcinos , Interferones , Antivirales/farmacología , Proteínas/genética , Virus de la Diarrea Epidémica Porcina/genéticaRESUMEN
Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.
Asunto(s)
Hiperglucemia , Hiperhomocisteinemia , Ratas , Ratones , Humanos , Animales , Circulación Colateral , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Liso Vascular , Hiperhomocisteinemia/metabolismo , Apolipoproteínas E/metabolismo , Hiperglucemia/metabolismoRESUMEN
DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.
Asunto(s)
Adenina , Infecciones Bacterianas , Receptor Toll-Like 2 , Animales , Ratones , Adenina/análogos & derivados , Inflamación/genética , Metiltransferasas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genéticaRESUMEN
Invariant NKT (iNKT) cells are a group of innate-like T cells that plays important roles in immune homeostasis and activation. We found that iNKT cells, compared with CD4+ T cells, have significantly higher levels of lipid peroxidation in both mice and humans. Proteomic analysis also demonstrated that iNKT cells express higher levels of phospholipid hydroperoxidase glutathione peroxidase 4 (Gpx4), a major antioxidant enzyme that reduces lipid peroxidation and prevents ferroptosis. T cell-specific deletion of Gpx4 reduces iNKT cell population, most prominently the IFN-γ-producing NKT1 subset. RNA-sequencing analysis revealed that IFN-γ signaling, cell cycle regulation, and mitochondrial function are perturbed by Gpx4 deletion in iNKT cells. Consistently, we detected impaired cytokine production, elevated cell proliferation and cell death, and accumulation of lipid peroxides and mitochondrial reactive oxygen species in Gpx4 knockout iNKT cells. Ferroptosis inhibitors, iron chelators, vitamin E, and vitamin K2 can prevent ferroptosis induced by Gpx4 deficiency in iNKT cells and ameliorate the impaired function of iNKT cells due to Gpx4 inhibition. Last, vitamin E rescues iNKT cell population in Gpx4 knockout mice. Altogether, our findings reveal the critical role of Gpx4 in regulating iNKT cell homeostasis and function, through controlling lipid peroxidation and ferroptosis.
Asunto(s)
Ferroptosis , Homeostasis , Peroxidación de Lípido , Ratones Noqueados , Células T Asesinas Naturales , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/inmunología , Ferroptosis/fisiología , Animales , Peroxidación de Lípido/inmunología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratones , Homeostasis/inmunología , Humanos , Células T Asesinas Naturales/inmunología , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Masculino , Femenino , Mitocondrias/metabolismo , Interferón gamma/metabolismoRESUMEN
Although two-dimensional (2D) atomic layers, such as transition-metal chalcogenides, have been widely synthesized using techniques such as exfoliation1-3 and vapour-phase growth4,5, it is still challenging to obtain phase-controlled 2D structures6-8. Here we demonstrate an effective synthesis strategy via the progressive transformation of non-van der Waals (non-vdW) solids to 2D vdW transition-metal chalcogenide layers with identified 2H (trigonal prismatic)/1T (octahedral) phases. The transformation, achieved by exposing non-vdW solids to chalcogen vapours, can be controlled using the enthalpies and vapour pressures of the reaction products. Heteroatom-substituted (such as yttrium and phosphorus) transition-metal chalcogenides can also be synthesized in this way, thus enabling a generic synthesis approach to engineering phase-selected 2D transition-metal chalcogenide structures with good stability at high temperatures (up to 1,373 kelvin) and achieving high-throughput production of monolayers. We anticipate that these 2D transition-metal chalcogenides will have broad applications for electronics, catalysis and energy storage.