Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 242(3): 1275-1288, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426620

RESUMEN

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Asunto(s)
Alphaproteobacteria , Microbiota , Zea mays/microbiología , Microbiología del Suelo , Suelo/química , Rizosfera , Fertilización
2.
J Environ Manage ; 354: 120498, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417361

RESUMEN

Liming, as a common amelioration practice worldwide, has the potential to alleviate soil acidification and ensure crop production. However, the impacts of long-term liming on the temperature sensitivity (Q10) of soil organic carbon (SOC) mineralization and its response to labile C input remain unclear. To fill the knowledge gap, soil samples were collected from a long-term (∼10 years) field trial with unlimed and limed (CaO) plots. These soil samples were incubated at 15 °C and 25 °C for 42 days, amended without and with 13C-labeled glucose. Results showed that compared to the unlimed soil (3.6-8.6 mg C g-1 SOC), liming increased SOC mineralization (6.1-11.2 mg C g-1 SOC). However, liming significantly mitigated the positive response of SOC mineralization to warming, resulting in a lower Q10. Long-term liming increased bacterial richness and Shannon diversity as well as their response to warming which were associated with the decreased Q10. Furthermore, the decreased Q10 due to liming was attributed to the decreased response of bacterial oligotrophs/copiotrophs ratio, ß-glucosidase and xylosidase activities to warming. Labile C addition had a strong impact on Q10 in the unlimed soil, but only a marginal influence in the limed soil. Overall, our research highlights that acidification amelioration by long-term liming has the potential to alleviate the positive response of SOC mineralization to warming and labile C input, thereby facilitating SOC stability in agroecosystems, especially for acidic soils in subtropical regions.


Asunto(s)
Compuestos de Calcio , Carbono , Suelo , Microbiología del Suelo , Óxidos
3.
Environ Res ; 208: 112676, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998810

RESUMEN

With the growing awareness of environmental impacts of land degradation, pressure is mounting to improve the health and productivity of degrading soils, which could be achieved through the use of raw and modified biochar materials. The primary objective of the current study was to investigate the efficiency of pristine and Mg-modified rice-straw biochar (RBC and MRBC) for the reduction of greenhouse gases (GHG) emissions and improvement of soil properties. A 90 days' incubation experiment was conducted using treatments which included control (CK), two RBC dosages (1% and 2.5%), and two MRBC doses (1% and 2.5%). Soil physico-chemical and biological properties were monitored to assess the effects due to the treatments. Results showed that both biochars improved soil physicochemical properties as the rate of biochar increased. The higher rates of biochar (RBC2.5 and MRBC2.5) particularly increased enzymatic activities (Catalase, Invertase and Urease) in comparison to the control. Data obtained for phospholipid fatty acid (PLFA) concentration indicated an increase in the Gram-negative bacteria (G-), actinomycetes and total PLFA with the increased biochar rate, while Gram-positive bacteria (G+) showed no changes to either level of biochar. As regards fungi concentration, it decreased with the biochar addition, whereas arbuscular mycorrhizal fungi (AMF) showed non-significant changes. The release of CO2, CH4 and N2O showed a decreasing trend over the time. CO2 cumulative emission decreased for MRBC1 (5%) and MRBC2.5 (9%) over the pristine biochar treatments. The cumulative N2O emission decreased by 15-32% for RBC1 and RBC2.5 and by 22-33% for MRBC1 and MRBC2.5 as compared to the control, whereas CH4 emission showed non-significant changes. Overall, the present study provides for the first-time data that could facilitate the correct use of Mg-modified rice biochar as a soil additive for the mitigation of greenhouse gas emission and improvement of soil properties.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Agricultura/métodos , Carbón Orgánico , Óxido Nitroso , Suelo/química
4.
Environ Res ; 203: 111879, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390716

RESUMEN

To mitigate greenhouse gas (GHG) emissions, different strategies have been proposed, including application of dolomite, crop straw and biochar, thus contributing to cope with the increasing global warming affecting the planet. In the current study, pristine wheat straw biochar (WBC) and magnesium (MgCl2.6H2O) modified wheat straw biochar (MWBC) were used. Treatments included control (CK), two WBC dosages (1% and 2.5%), and two MWBC doses (1% and 2.5%). After 90 days of incubation, WBC and MWBC improved the soil physiochemical properties, being more pronounced with increasing rates of biochar. MWBC2.5 significantly decreased microbial biomass carbon (MBC), while microbial biomass nitrogen (MBN) increased when both biochar materials (WBC1 and MWBC1) were applied at low rate. Compared to control soil, Urease and Alkaline phosphatase activities increased with the increasing rate of WBC and MWBC. The activities of dehydrogenase and ß-glucosidase decreased with the WBC and MWBC application, compared to CK. The fluxes of all the three GHGs evaluated (CO2, CH4 and N2O) decreased with time for both biochar amendments, while cumulative emission of CO2 increased by 58% and 45% for WBC, and by 54% and 41% for MWBC, as compared to CK. The N2O cumulative emissions decreased by 18 and 34% for WBC, and by 25 and 41% for MWBC, compared to CK, whereas cumulative methane emission showed non-significant differences among all treatments. These findings indicate that Mg-modified wheat straw biochar would be an appropriate management strategy aiding to reduce GHG emissions and improving the physiochemical properties of affected soils, and specifically of the red dry land soil investigated in the current work.


Asunto(s)
Gases de Efecto Invernadero , Agricultura , Carbón Orgánico , Magnesio , Óxido Nitroso , Suelo , Triticum
5.
Imeta ; 3(1): e161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868509

RESUMEN

Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C-degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro-food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro-food web features by using soil enzyme profile analysis.

6.
Medicine (Baltimore) ; 102(23): e33715, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335671

RESUMEN

BACKGROUND: Parkinson's disease (PD) is by now the second of the most prevalent neurodegenerative diseases in the world, and its incidence is increasing rapidly as the global population ages, with 14.2 million PD patients expected worldwide by 2040. METHODS: We gathered a completion of 45 serum samples, including 15 of healthy controls and 30 from the PD group. We used non-targeted metabolomics analysis based on liquid chromatography-mass spectrometry to identify the molecular changes in PD patients, and conducted bioinformatics analysis on this basis to explore the possible pathogenesis of PD. RESULTS: We found significant metabolomics changes in the levels of 30 metabolites in PD patients compared with healthy controls. CONCLUSION: Lipids and lipid-like molecules accounted for the majority of the 30 differentially expressed metabolites. Also, pathway enrichment analysis showed significant enrichment in sphingolipid metabolic pathway. These assessments can improve our perception on the underlying mechanism of PD as well as facilitate a better targeting on therapeutic interventions.


Asunto(s)
Enfermedades Metabólicas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Biomarcadores , Metabolómica/métodos
7.
Nat Commun ; 13(1): 3361, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688828

RESUMEN

Microbiomes are important for crop performance. However, a deeper knowledge of crop-associated microbial communities is needed to harness beneficial host-microbe interactions. Here, by assessing the assembly and functions of maize microbiomes across soil types, climate zones, and genotypes, we found that the stem xylem selectively recruits highly conserved microbes dominated by Gammaproteobacteria. We showed that the proportion of bacterial taxa carrying the nitrogenase gene (nifH) was larger in stem xylem than in other organs such as root and leaf endosphere. Of the 25 core bacterial taxa identified in xylem sap, several isolated strains were confirmed to be active nitrogen-fixers or to assist with biological nitrogen fixation. On this basis, we established synthetic communities (SynComs) consisting of two core diazotrophs and two helpers. GFP-tagged strains and 15N isotopic dilution method demonstrated that these SynComs do thrive and contribute, through biological nitrogen fixation, 11.8% of the total N accumulated in maize stems. These core taxa in xylem sap represent an untapped resource that can be exploited to increase crop productivity.


Asunto(s)
Microbiota , Fijación del Nitrógeno , Bacterias , Nitrógeno , Raíces de Plantas/microbiología , Plantas , Microbiología del Suelo , Xilema , Zea mays
8.
PLoS One ; 13(9): e0203812, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30212559

RESUMEN

The effects of soil type and organic material quality on the microbial biomass and functional diversity of cropland soils were studied in a transplant experiment in the same climate during a 1-year field experiment. Six organic materials (WS: wheat straw, CS: corn straw, WR: wheat root, CR: corn root, PM: pig manure, CM: cattle manure), and three contrasting soils (Ferralic Cambisol, Calcaric Cambisol and Luvic Phaeozem) were chosen. At two time points (at the end of the 1st and 12th months), soil microbial biomass carbon (C) and nitrogen (N) (MBC and MBN) and Biolog Ecoplate substrate use patterns were determined, and the average well color development and the microbial functional diversity indices (Shannon, Simpson and McIntosh indices) were calculated. Organic material quality explained 29.5-50.9% of the variance in MBC and MBN when compared with the minor role of soil type (1.4-9.3%) at the end of the 1st and 12th months, and C/N ratio and total N of organic material were the main parameters. Soil properties, e.g., organic C and clay content were the predominant influence on microbial functional diversity in particular at the end of the 12th month (61.8-82.8% of the variance explained). The treatments of WS and CS significantly improved the MBC and microbial functional diversity indices over the control in the three soils in both sampling periods (P < 0.05). These results suggest that the application of crop straw is a long-term effective measure to increase microbial biomass, and can further induce the changes of soil properties to regulate soil microbial community.


Asunto(s)
Biodiversidad , Biomasa , Carbono/análisis , Productos Agrícolas/microbiología , Fertilizantes , Microbiología del Suelo , Animales , Bovinos , Estiércol , Nitrógeno/análisis , Lluvia , Suelo/química , Sus scrofa , Temperatura , Triticum , Zea mays
9.
Ying Yong Sheng Tai Xue Bao ; 26(3): 833-8, 2015 Mar.
Artículo en Zh | MEDLINE | ID: mdl-26211066

RESUMEN

Using a microplate fluorimetric assay method, five fertilization treatments, i.e. no-fertilizer control (CK) , sole application of nitrogen (N), balanced application of nitrogen, phosphorus, and potassium fertilizer (NPK), application of pig manure (M), and combination of pig manure with balanced chemical fertilizer (MNPK) were selected to investigate the effects of different long-term fertilization regimes on the activity of five enzymes (ß-1, 4-glucosidase, ßG; cellobiohydrolase, CBH; ß-1, 4-xylosidase, ßX; ß-1, 4-N-acetylglucosaminidase, NAG; acid phosphatase, AP) in a red soil sampled from Qiyang, Hunnan Province. The results showed that compared with CK treatment, N treatment had no impact on ßG, ßX, CBH, and NAG activities but reduced AP activity, while NPK, M and MNPK treatments increased the activities of all the five enzymes. Correlation analysis indicated that all the five enzyme activities were positively correlated with the content of nitrate (r=0.465-0.733) , the content of available phosphorus (r=0.612-0.947) , soil respiration (r=0.781-0.949) and crop yield (r=0.735-0.960), while ßG, CBH and AP were positively correlated with pH (r= 0.707-0.809), only AP was significantly correlated with dissolvable organic carbon (r = -0.480). These results suggested that the activities of the measured enzymes could be used as indicators of red soil fertility under different fertilization regimes, but the five enzymes tested provided limited information on the degree of acidification induced by application of mineral nitrogen.


Asunto(s)
Ciclo del Carbono , Enzimas/análisis , Fertilizantes , Ciclo del Nitrógeno , Microbiología del Suelo , Suelo/química , Animales , Carbono/análisis , Estiércol , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Porcinos
10.
Ying Yong Sheng Tai Xue Bao ; 22(4): 992-8, 2011 Apr.
Artículo en Zh | MEDLINE | ID: mdl-21774323

RESUMEN

An investigation was made at a double-rice paddy field in the Qiyang Red Soil Field Experimental Station, Hunan Province, China to study the species and biomass of weeds growing in rice (Oryza sativa L.) growth season after 34-year application of sulfur (SO4(2-)) and chloride (Cl(-))-containing chemical fertilizers under the same application rates of nitrogen (N), phosphorus (P), and potassium (K). Long-term application of Cl(-)-containing chemical fertilizer resulted in the greatest species number of weeds and the highest biomass of floating weeds and wet weeds, compared with long-term application of SO4(2-) and Cl(-) +SO4(2-)-containing chemical fertilizers. In early rice growth season, the biomass of weeds after applying Cl(-)-containing chemical fertilizer was 51.4% and 17.6% higher than that after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, respectively; in late rice growth season, the increment was 144% and 242%, respectively. More floating weeds were observed after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, but few of them were found after applying Cl(-)-containing chemical fertilizer. The total dry mass of weeds and the dry mass of wet weeds were positively correlated with soil Cl(-) content (r = 0.764, P < 0.01 and r = 0.948, P < 0.01, respectively), but negatively correlated with soil SO4(2-)-S content (r = 0.849, P < 0.01 and r = 0.641, P < 0.05). Soil alkali-hydrolyzable N and available P, under the co-effects of soil SO4(2-)-S, Cl(-), and pH, had indirect effects on the total dry mass of weeds. By adopting various fertilization measures to maintain proper soil pH and alkali-hydrolyzable N and available P contents, increase soil SO42(-)-S content, and decrease soil Cl(-) content, it could be possible to effectively inhibit the growth of wet weeds and to decrease the total biomass of weeds in double-rice paddy field.


Asunto(s)
Cloruros/farmacología , Fertilizantes , Oryza/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Azufre/farmacología , China , Ecosistema , Nitrógeno/farmacología , Fósforo/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA