Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 83(2): 298-313.e8, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603579

RESUMEN

Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón Tipo I , Animales , Ratones , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Fosforilación , Transducción de Señal , Galactosiltransferasas/metabolismo
2.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683175

RESUMEN

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Asunto(s)
Simulación de Dinámica Molecular , Neurotransmisores , Serotonina , Radiación Terahertz , Ácido gamma-Aminobutírico , Neurotransmisores/química , Ácido gamma-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-39079512

RESUMEN

INTRODUCTION: Vitexin is a natural flavonoid compound extracted from Vitex leaves or seeds, exhibiting various pharmacological activities including anticancer, antihypertensive, anti-inflammatory, and spasmolytic effects. However, its protective effects on hypertensive nephropathy (HN) and the underlying mechanisms remain unclear. METHODS: Spontaneous hypertension rats were fed a high-sugar and high-fat diet for 8 weeks to induce the disease HN model. From the 5th week, the rats were administered vitexin via gavage. Blood pressure was measured bi-weekly using the tail-cuff method. Histopathological changes were assessed using HE staining, and biochemical analyses were performed to evaluate the effects of vitexin on HN rats. The underlying mechanisms of vitexin treatment were investigated through western blotting. RESULTS: The data demonstrated that vitexin significantly lowered systolic, diastolic, and mean arterial pressures, and ameliorated histopathological changes in HN rats. Biochemical analyses revealed that vitexin reduced the levels of creatinine (Cr), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), total protein (TP), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and advanced glycation end products (AGEs), while increasing the levels of albumin (ALB) and superoxide dismutase (SOD). Western blotting results indicated that vitexin treatment decreased the expression of TNF-α, IL-6, and nuclear factor kappa-B (NF-κB), while increasing the expression of SOD. CONCLUSION: The findings of this study suggest that vitexin exerts protective effects against HN, providing pharmacological evidence for its potential use in HN treatment.

4.
Anal Bioanal Chem ; 415(17): 3463-3474, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199793

RESUMEN

Lead contamination is a major concern in food safety and, as such, many lead detection methods have been developed, especially aptamer-based biosensors. However, the sensitivity and environmental tolerance of these sensors require improvement. A combination of different types of recognition elements is an effective way to improve the detection sensitivity and environmental tolerance of biosensors. Here, we provide a novel recognition element, an aptamer-peptide conjugate (APC), to achieve enhanced affinity of Pb2+. The APC was synthesized from Pb2+ aptamers and peptides through clicking chemistry. The binding performance and environmental tolerance of APC with Pb2+ was studied through isothermal titration calorimetry (ITC); the binding constant (Ka) was 1.76*106 M-1, indicating that the APC's affinity was increased by 62.96% and 802.56% compared with the aptamers and peptides, respectively. Besides, APC demonstrated better anti-interference (K+) than aptamer and peptide. Through the molecular dynamics (MD) simulation, we found that more binding sites and stronger binding energy between APC with Pb2+are the reasons for higher affinity between APC with Pb2+. Finally, a carboxyfluorescein (FAM)-labeled APC fluorescent probe was synthesized and a fluorescent detection method for Pb2+ was established. The limit of detection of the FAM-APC probe was calculated to be 12.45 nM. This detection method was also applied to the swimming crab and showed great potential in real food matrix detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Plomo , Aptámeros de Nucleótidos/química , Límite de Detección , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos
5.
Perfusion ; 38(1): 214-219, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617832

RESUMEN

Aluminium phosphide (ALP) and aluminium zinc phosphide (ZnP), the two main ingredients of fumigation drugs, are commonly used to kill insects or rodents in grain. When exposed to water, highly toxic phosphine gas is released and absorbed through the respiratory or digestive tract. Phosphine gas could non-selectively block cytochrome oxidase, inhibit electron transfer and suppress oxidative phosphorylation, leading to cellular hypoxia and organ dysfunction. The characteristic clinical manifestations are refractory shock and metabolic acidosis with high mortality. However, patients with ALP poisoning have a chance to be cured. Here, we report a case of oral ALP poisoning that was successfully treated by extracorporeal membrane oxygenation (ECMO) combined with continuous renal replacement therapy (CRRT) during frequent ventricular fibrillation and cardiac dysfunction.


Asunto(s)
Aluminio , Reanimación Cardiopulmonar , Humanos , Arritmias Cardíacas
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 565-570, 2022 Jun 10.
Artículo en Zh | MEDLINE | ID: mdl-35773756

RESUMEN

OBJECTIVE: To investigate the factors affecting phenotypes in the patients of methylmalonic acidemia combined with homocysteinemia cblC type with MMACHC c.609G>A homologous variant. METHODS: A retrospective study on the clinical manifestations, complications, treatment, and outcome in 164 patients of cblC type with MMACHC c.609G>A homologous variant was conducted. The patients were diagnosed by biochemical and genetic analysis from January 1998 to December 2020. RESULTS: Among the 164 patients, 2 cases were prenatally diagnosed and began treatment after birth. They are 3 and 12 years old with normal physical and mental development. Twenty-one cases were diagnosed by newborn screening. Among them, 15 cases had with normal development. They were treated from the age of two weeks at the asymptomatic period. Six cases began treatment aged 1 to 3 months after onset. Their development was delayed. One hundred and forty-one cases were clinically diagnosed. Their onset age ranges from a few minutes after birth to 6 years old. 110 cases had early-onset (78.0%). 31 cases had late-onset (22.0%). Five of them died. 24 patients lost to follow-up. Of the 141 clinically diagnosed patients, 130 (92.2%) with psychomotor retardation, 69 (48.9%) with epilepsy, 39 (27.7%) with anemia, 30 (21.3%) had visual impairment, 27 (19.1%) had hydrocephalus, 26 (18.4%) had feeding difficulties, 7 (5.0%) with liver damage, and 5 (3.5%) with metabolic syndrome. The frequency of hydrocephalus and seizures was significantly higher in the early-onset group. The urinary methylmalonic acid increased significantly in the patients with epilepsy. During the long-term follow-up, the level of plasma total homocysteine in the seizure-uncontrolled group was significantly higher than that in the seizure-controlled group, the difference had a statistical significance (P<0.05). CONCLUSION: Most of the patients with MMACHC c.609G>A homozygous variant had early-onset disease, with a high mortality and disability rate. If not treated in time, it will lead to neurological damage, resulting in epilepsy, mental retardation, hydrocephalus, and multiple organ damage. Pre-symptomatic diagnosis and treatment are crucial to prevent irreversible neurological damage. Neonatal screening and prenatal diagnosis are important to improve the outcome of the patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Hidrocefalia , Oxidorreductasas , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Femenino , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/enzimología , Hidrocefalia/genética , Mutación , Oxidorreductasas/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Convulsiones/genética
7.
J Inherit Metab Dis ; 43(3): 409-423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31622506

RESUMEN

Methylmalonic acidemia (MMA) is the most common organic acidemia in China. This study aimed to characterise the genotypic and phenotypic variabilities, and the molecular epidemiology of Chinese patients with isolated MMA. Patients (n = 301) with isolated MMA were diagnosed by clinical examination, biochemical assays, and genetic analysis. Fifty-eight patients (19.3%) were detected by newborn screening and 243 patients (80.7%) were clinically diagnosed after onset. Clinical onset ranged from the age of 3 days to 23 years (mean age = 1.01 ± 0.15 years). Among 234 MMA patients whose detailed clinical data were available, 170 (72.6%) had early onset disease (before the age of 1 year), and 64 (27.4%) had late-onset disease. The 234 MMA patients manifested with neuropsychiatric impairment (65.4%), haematological abnormality (31.6%), renal damage (8.5%), and metabolic crises (67.1%). Haematological abnormality was significantly more common in early-onset patients than that in late-onset patients. The incidence of metabolic crises was significantly high (P < 0.001) in patients with mut type than those with other types of isolated MMA. Variations (n = 122) were identified in MMUT, MMAA, MMAB, MMADHC, SUCLG1, and SUCLA2, of which 45 were novel. c.729_730insTT was the most frequent MMUT mutation, with a significantly higher frequency in our patients than that in 151 reported European patients. The frequency of c.914T>C in MMUT in our cohort was also higher than that in 151 European patients. MMUT mutations c.729_730insTT and c.914T>C are specific for the Chinese population. Our study expanded the spectrum of phenotypes and genotypes in isolated MMA.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Adolescente , Edad de Inicio , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Pueblo Asiatico , Niño , Preescolar , China , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Ácido Metilmalónico , Mutación , Fenotipo , Adulto Joven
8.
Phytopathology ; 110(12): 1923-1933, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32689905

RESUMEN

The infection processes of Ceratocystis fimbriata BMPZ13 (BMPZ13) was elucidated on vegetative tissues of sweetpotato plants employing light and scanning electron microscopy. Vegetative tissues infected with C. fimbriata BMPZ13 by either wounding or nonwounding inoculation methods developed typical disease symptoms, establishing black rot in stems and necrosis on buds, young leaves, and stems of sprouts, in addition to wilt on leaves and shoot cuttings, typical of vascular associated diseases. The runner hyphae of C. fimbriata BMPZ13 formed from germinated conidia were able to directly penetrate the epidermal cuticle for initial infection and invade sweetpotato peltate glandular trichomes, specialized secretory structures to store and secrete metabolites. A two-step biotrophic phase was observed with nonwounding inoculation on leaves and stems, featuring both intercellular and intracellular invasive hyphae, with the latter found within living cells of the leaf epidermis. Subsequent to the biotrophic phase was a necrotrophic phase displaying cell death in infected leaves and veins. Additionally, this cell death was an iron-associated ferroptosis, supporting the notion that iron is involved in the necrotrophic phase of C. fimbriata BMPZ13 infection. Significantly, we establish that C. fimbriata employs a unique infection strategy: the targeting of peltate glandular trichomes. Collectively, our findings show that C. fimbriata is a plant fungal pathogen with a hemibiotrophic infection style in sweetpotato vegetative tissues.


Asunto(s)
Ascomicetos , Infecciones , Ipomoea batatas , Ceratocystis , Humanos , Enfermedades de las Plantas , Tricomas
9.
Am J Physiol Cell Physiol ; 316(1): C70-C80, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404560

RESUMEN

Myasthenia gravis (MG) is an autoimmune neuromuscular disorder, affecting the quality of life of millions of people worldwide. The present study aims to determine the relationship between micro-RNA-143 (miR-143) and C-X-C motif chemokine 13 (CXCL13) and whether it influences the pathogenesis of myasthenia gravis (MG). Thymus specimens were resected from patients with thymic hyperplasia combined with MG and then infused into normal mouse cavities to establish MG mouse models. Immunohistochemistry, reverse transcription-quantitative PCR, in situ hybridization detection, and Western blot analysis were employed to identify the expression of miR-143 and CXCL13 in MG and normal mice. The obtained thymocytes were cultured in vitro and transfected with a series of miR-143 mimic, miR-143 inhibitor, overexpression of CXCL13, or siRNA against CXCL13. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and flow cytometry assays were employed to assess cell viability, cycle entry, and apoptosis of the thymocytes. Dual-luciferase reporter assay provided verification, confirming that CXCL13 was the target gene of miR-143. Low miR-143 expression in the thymus tissues of the MG mice was detected, which presented with a reciprocal relationship with the expression rate of CLCX13. Observations in relation to the interactions between miR-143 mimic or siRNA-CXCL13 exposure showed reduced cell viability, with a greater number of cells arrested at the G0/G1 phase and a greater rate of induced apoptosis. Furthermore, overexpression of CXCL13 rescued miR-143 mimic-induced apoptosis. The findings have identified the potential role of miR-143 as a MG development mediator by targeting CXCL13. The key results obtained provide a promising experimental basis for targeted intervention treatment with miR-143.


Asunto(s)
Proliferación Celular/fisiología , Quimiocina CXCL13/biosíntesis , Modelos Animales de Enfermedad , MicroARNs/biosíntesis , Miastenia Gravis/metabolismo , Timocitos/metabolismo , Adolescente , Adulto , Animales , Apoptosis/fisiología , Células Cultivadas , Quimiocina CXCL13/antagonistas & inhibidores , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Miastenia Gravis/patología , Timocitos/patología , Adulto Joven
10.
J Cell Physiol ; 234(8): 13001-13013, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30537159

RESUMEN

Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), is a gene isolated from a human liver complementary DNA library. In this study, we found that LASS2 protein level was positively related to International Federation of Gynecology and Obstetrics (FIGO) stage and LASS2-negative tumors showed significant association with longer disease-free survival (DFS) and overall survival (OS) in ovarian cancer patients. The heterogeneous expression of LASS2 had been exhibited in diverse ovarian cancer cells. A significantly lower messenger RNA (mRNA) and protein level of LASS2 was seen in 3AO cell compared with those in other types of ovarian cancer cells. Meanwhile, the mRNA and protein levels of LASS2 in ES-2 and NIH:OVCAR-3 cells were obviously higher. LASS2 overexpression in 3AO cell could promote migration, invasion, and metastasis abilities in vitro and in vivo, while LASS2 knockdown in ES-2 and NIH:OVCAR-3 cells had the opposite effects. The oncogenic capacity of LASS2 in ovarian cancer may be mediated by increased expression of YAP/TAZ. It is indicated that lowering the expression of LASS2 is likely to serve as an unprecedented approach for the treatment of ovarian cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario/patología , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/patología , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Biomarcadores de Tumor/análisis , Carcinoma Epitelial de Ovario/metabolismo , Movimiento Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Pronóstico , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
11.
J Cell Physiol ; 234(8): 13629-13638, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30609035

RESUMEN

The discovery of cysteine-rich secretory protein 3 (CRISP3) has been made in human neutrophils for the first time. Cloning of the complementary DNA (cDNA) for CRISP3 was performed from a cDNA library of human bone marrow. In patients with mammary carcinoma, we found that lower expression of CRISP3 was connected to a significantly improved DFS (disease-free survival) and OS (overall survival). Furthermore, the CRISP3 protein level was significantly associated with negative ANXA1 protein level. In addition, the heterogeneous expression of CRISP3 had been exhibited in diverse mammary carcinoma cells. A significant higher mRNA and the protein level of CRISP3 were seen in T-47D as well as SK-BR-3 cells compared with those in other types of mammary carcinoma cells. Knockdown of CRISP3 in T-47D or SK-BR-3 cells resulted in the weakened migration or invasion abilities. Furthermore, CRISP3 knockdown significantly inhibited the ERK1/2 MAPK signaling pathway in T-47D or SK-BR-3 cells. Research results indicated that the lowering in the expression of CRISP3 is likely to serve as an unprecedented approach for the treatment of mammary carcinoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Proteínas de Plasma Seminal/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Pronóstico
12.
J Cell Physiol ; 234(6): 9033-9044, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362546

RESUMEN

Development of effective therapeutic drugs for Parkinson's disease (PD) is of great importance. Aberrant microRNA (miRNA) expression has been identified in postmortem human PD brain samples, in vitro and in vivo PD models. However, the role of miR-342-3p in PD has been understudied. The study explores the effects of miR-342-3p on expression of glutamate (Glu) transporter, and dopaminergic neuron apoptosis and proliferation by targeting p21-activated kinase 1 (PAK1) through the Wnt signaling pathway in PD mice. After establishment of PD mouse models, gain- or loss-of-function assay was performed to explore the functional role of miR-342-3p in PD. Number of apoptotic neurons and Glu concentration was then determined. Subsequently, PC12 cells were treated with miR-342-3p mimic, miR-342-3p inhibitor, dickkopf-1 (DKK1), and miR-342-3p inhibitor + DKK1. The expression of miR-342-3p, PAK1, the Wnt signaling pathway-related and apoptosis-related genes, Glutamate transporter subtype 1 (GLT-1), l-glutamate/ l-aspartate transporter (GLAST), tyrosine hydroxylase (TH) was measured. Also, cell viability and apoptosis were evaluated. PD mice exhibited increased miR-342-3p, while decreased expression of PAK1, GLT-1, GLAST, TH, and the Wnt signaling pathway-related and antiapoptosis genes. miR-342-3p downregulation could promote expression of PAK1, the Wnt signaling pathway-related and antiapoptosis genes. GLT-1, GLAST, and TH as well as cell viability, but reduce cell apoptosis rate. The results indicated that suppression of miR-342-3p improves expression of Glu transporter and promotes dopaminergic neuron proliferation while suppressing apoptosis through the Wnt signaling pathway by targeting PAK1 in mice with PD.


Asunto(s)
Apoptosis , Encéfalo/enzimología , Neuronas Dopaminérgicas/enzimología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , MicroARNs/metabolismo , Enfermedad de Parkinson/enzimología , Vía de Señalización Wnt , Quinasas p21 Activadas/metabolismo , Animales , Encéfalo/patología , Proliferación Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/genética , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Células PC12 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ratas , Quinasas p21 Activadas/genética
13.
J Cell Physiol ; 234(9): 16400-16411, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30790266

RESUMEN

Long noncoding RNAs, including HOTAIR, are involved in the pathogenesis of a wide range of diseases. This study aimed to explore the mechanism underlying the involvement of HOTAIR in neonatal bronchial hyperresponsiveness (BHR). A total of 105 newborns were recruited in this study to collect their peripheral blood mononuclear cell and serum samples, which were then divided into different genotype groups based on the genotypes of rs4759314, rs874945, and rs7958904. The real-time polymerase chain reaction, western blot analysis, computational analyses, and luciferase assays were performed to establish the regulatory relationships between the HOTAIR, microRNA-126 (miR-126), and interleukin-13 (IL-13). The level of HOTAIR, miR-126, and IL-13 among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups was similar. However, the level of HOTAIR was increased in the rs7958904 GG group, accompanied by a decreased level of miR-126 and IL-13. In addition, the level of airway responsiveness was comparable among rs4759314 AA, AG, and GG groups, as well as among rs874945 GG, AG, and AA groups. However, the airway responsiveness in the groups rs7958904 CG and CC was much stronger than that of the GG group. We also demonstrated that, by directly binding to miR-126, HOTAIR reduced the expression of miR-126, which in turn decreased the expression of IL-13. In summary, we demonstrated the role of HOTAIR-induced downregulation of miR-126 and IL-13 in the development of BHR in neonates.

14.
J Cell Biochem ; 120(1): 861-871, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30125994

RESUMEN

Ectodermal-neural cortex 1 (ENC1) belongs to a member of the kelch family of genes. It is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. Here, we found that lower expression of ENC1 in the ovarian cancer patients was associated with favorable prognosis. In addition, ENC1 was heterogeneously expressed in various ovarian cancer cells. The messenger RNA and protein expression levels of ENC1 in HO-8910PM and NIH:OVCAR-3 cells were obviously higher than that in the other types of ovarian cancer cells. Knockdown of ENC1 in HO-8910PM or NIH:OVCAR-3 cells could significantly increase the reactive oxygen species levels, resulting in inhibition of in vitro proliferation, migration, and invasion. Our findings suggest that decreasing expression of ENC1 may be a new approach that can be used for ovarian cancer treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Estudios de Cohortes , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Estadificación de Neoplasias , Neoplasias Ováricas/metabolismo , Pronóstico , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Transfección
15.
Mol Med ; 25(1): 29, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215394

RESUMEN

BACKGROUND: Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. METHODS: Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. RESULTS: FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. CONCLUSIONS: Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína HMGB1/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL/fisiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Western Blotting , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Proteína HMGB1/genética , Inmunidad Innata/genética , Inmunohistoquímica , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
IUBMB Life ; 71(1): 81-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296359

RESUMEN

Glioma is known to be the most prevalent primary brain tumor. In recent years, there has been evidence indicating myeloid cell leukemia-1 (MCL1) plays a role in brain glioblastoma. Therefore, the present study was conducted with aims of exploring the ability of MCL1 silencing to influence glioma cell senescence and apoptosis through the mediation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Glioma and tumor-adjacent tissues were collected in order to detect the presence of higher levels of MCL1 protein expression. Next, the mRNA and protein expression of MCL1, PI3K, Akt, B cell lymphoma 2 (Bcl2), Bcl2-associated X (Bax), B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), and phosphatase and tensin homolog (PTEN) were determined. Cell counting kit-8 assay was applied to detect cell proliferation, ß-galactosidase staining for cell senescence, and flow cytometry for cell cycle entry and apoptosis. Initially, the results revealed higher positive expression rate of MCL1 protein, increased mRNA and protein expression of MCL1, PI3K, Akt, Bmi-1, and Bcl-2 and decreased that of Bax and PTEN in human glioma tissues. The silencing of MCL1 resulted in a decrease in mRNA and protein expression of PI3K, Akt, Bmi-1, and Bcl-2 and an increase in Bax and PTEN expressions in glioma cells. Moreover, silencing of MCL1 also inhibited cell proliferation and cell cycle entry in glioma cells, and promoted glioma cell senescence and apoptosis. In conclusion, the aforementioned results collectively suggested that the silencing of MCL1 promotes senescence and apoptosis in glioma cells through inhibiting the PI3K/Akt signaling pathway. Thus, decreasing the expression of MCL1 might have therapeutic functions in glioma. © 2018 IUBMB Life, 71(1):81-92, 2019.


Asunto(s)
Proliferación Celular/genética , Senescencia Celular/genética , Glioma/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Adolescente , Adulto , Apoptosis/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/genética , Adulto Joven , Proteína X Asociada a bcl-2/genética
17.
J Cell Mol Med ; 22(6): 3167-3182, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29536658

RESUMEN

Hypoxia-ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA-140-5p (miR-140-5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR-140-5p provides cerebral protection using DEX to treat hypoxic-ischaemic brain damage (HIBD) in neonatal rats via the Wnt/ß-catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/ß-catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl-2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, ß-catenin, TCF-4, E-cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR-140-5p and si-Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR-140-5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/ß-catenin signalling pathway.


Asunto(s)
Dexmedetomidina/administración & dosificación , Hipoxia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , MicroARNs/genética , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/genética , Hipoxia Encefálica/patología , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Vía de Señalización Wnt , Proteína Wnt1/genética , beta Catenina/genética
18.
J Cell Physiol ; 233(12): 9488-9502, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29995978

RESUMEN

Recent studies have proposed that microRNAs (miR) function as novel diagnostic and prognostic biomarkers and therapeutic targets in Alzheimer's disease (AD), a common disease among the elderly. In the current study, we aim to explore the effect of miR-186 on oxidative stress injury of neuron in rat models of AD with the involvement of the interleukin-2 (IL2) and the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. AD rat models were established, and dual-luciferase reporter assay and online software were used to confirm the targeting relationship between miR-186 and IL2. Immunohistochemistry was used evaluating the positive rate of IL2. Afterward, to define the role of miR-186 in AD, miR-186, IL2, and JAK-STAT related protein (JAK2, STAT3) expressions were quantified. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, and cell apoptosis was detected by flow cytometry. We observed downregulated miR-186 and IL2 and upregulated JAK-STAT signaling pathway related genes in AD. The overexpression of miR-186 was shown to significantly promote cell proliferation while suppressing cell apoptosis along with the expression of the IL2 and JAK-STAT signaling pathway related protein. Collectively, the key findings obtained from the current study define the potential role of miR-186 as an inhibitor of AD development by downregulation of IL2 through suppression of the JAK-STAT signaling pathway.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Interleucina-2/metabolismo , Quinasas Janus/metabolismo , MicroARNs/metabolismo , Neuronas/patología , Estrés Oxidativo , Factor de Transcripción STAT3/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Apoptosis , Secuencia de Bases , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Factor de Crecimiento Epidérmico/metabolismo , Glutatión Peroxidasa/metabolismo , Hormona del Crecimiento/metabolismo , Hipocampo/patología , Interferón gamma/metabolismo , Interleucina-2/genética , L-Lactato Deshidrogenasa/metabolismo , Masculino , Malondialdehído/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , MicroARNs/genética , Neuronas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ratas Sprague-Dawley , Tiempo de Reacción , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
19.
J Cell Physiol ; 233(9): 7022-7034, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29380367

RESUMEN

Epilepsy is a group of neurological disorders characterized by epileptic seizures. In this study, we aim to explore the role of microRNA-421 (miR-421) in hippocampal neurons of epilepsy mice via the TLR/MYD88 pathway. Forty mice were randomly served as the normal and model (established as epilepsy model) groups. Hippocampal neurons were assigned into seven groups with different transfections. The RT-qPCR and western blotting were conducted to examine the expression of miR-421 TLR2, TLR4, MYD88, Bax, Bcl-2, p53, Beclin-1, and LC3II/LC3I. Cell proliferation and apoptosis were detected by MTT and flow cytometry.MYD88 is a target gene of miR-421. Model mice showed elevated expression of TLR2, TLR4, MYD88, Bax, p53, Beclin-1, and LC3II/LC3I but reduced expression of miR-421 and Bcl-2. In vitro experiments reveals that overexpression of miR-421 inhibited the TLR/MYD88 pathway. Besides, overexpressed miR-421 declined cell apoptosis but increased cell proliferation. It reveals that miR-421 targeting MYD88 could inhibit the apoptosis and autophagy of hippocampal neurons in epilepsy mice by down-regulating the TLR/MYD88 pathway.


Asunto(s)
Apoptosis , Autofagia , Epilepsia/genética , Hipocampo/patología , MicroARNs/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Neuronas/patología , Receptores Toll-Like/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Secuencia de Bases , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Puntos de Control del Ciclo Celular , Proliferación Celular/genética , Modelos Animales de Enfermedad , Epilepsia/patología , Masculino , Ratones , MicroARNs/genética , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Fase S , Transducción de Señal
20.
J Cell Physiol ; 233(8): 5895-5907, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29227541

RESUMEN

This study investigates the protective effects of miR-431 against cerebral ischemia-reperfusion injury through the Rho/Rho-kinase signaling pathway. SD rats were randomly classified into normal, sham, and model (middle cerebral artery occluded) groups. Rho expression and cerebral infarction were visualized by immunohischemistry and TTC staining, respectively. qRT-PCR and western blotting were used to measure mRNA and protein expression of miR-431 and Rho/Rho-kinase signaling pathway-related genes. Hippocampal neurons were extracted and assigned into normal, blank, negative control (NC), miR-431 mimics, miR-431 inhibitors, siRNA-Rho, and miR-431 inhibitors + siRNA-Rho groups. Proliferation and apoptosis were detected by MTT and flow cytometry, respectively. Compared with the normal group, the model group showed elevated Rho expression, area of cerebral infarction, and expressions of Rho/Rho-kinase related genes but reduced miR-431 expression. Compared with the blank group, expression of Rho, Rho-kinase α, and Rho-kinase ß decreased and miR-431 expression increased in the miR-431 mimics and siRNA-Rho groups, and the tendency reversed in the miR-431 inhibitors group. Enhanced proliferation and inhibited apoptosis were exhibited in the miR-431 mimics and siRNA-Rho groups while results in the miR-431 inhibitors group reversed. Findings obtained from this study indicated that miR-431 confers protection against cerebral ischemia-reperfusion injury through negatively regulating the Rho/Rho-kinase signaling pathway.


Asunto(s)
Infarto Cerebral/prevención & control , Hipocampo/patología , MicroARNs/genética , Daño por Reperfusión/prevención & control , Quinasas Asociadas a rho/metabolismo , Animales , Apoptosis/genética , Proliferación Celular/genética , Células Cultivadas , Infarto Cerebral/patología , Modelos Animales de Enfermedad , Hipocampo/citología , Masculino , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Quinasas Asociadas a rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA