Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(19): e2309230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112271

RESUMEN

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Asunto(s)
Regeneración Ósea , Colágeno , Células Madre Mesenquimatosas , Nanocables , Osteogénesis , Andamios del Tejido , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanocables/química , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Humanos , Colágeno/química , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Animales , Porphyromonas gingivalis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Streptococcus mutans/fisiología , Streptococcus mutans/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
2.
J Periodontal Res ; 59(1): 174-186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957805

RESUMEN

BACKGROUND: Periodontal ligament cells (PDLCs) are key mechanosensory cells involved in extracellular matrix (ECM) remodeling during orthodontic tooth movement (OTM). Mechanical force changes the ECM components, such as collagens and matrix metalloproteinases. However, the associations between the changes in ECM molecules and cellular dynamics during OTM remain largely uncharacterized. OBJECTIVES: To investigate the influence of mechanical force on the morphology and migration of PDLCs and explore the interaction between ECM remodeling and cellular dynamics, including the detailed mechanisms involved. METHODS: Human PDLCs (hPDLCs) were subjected to a static mechanical compression to mimic the compression state of OTM in vitro. A mouse OTM model was used to mimic the OTM procedure in vivo. The migration of hPDLCs was compared by wound healing and transwell migration assays. Moreover, expression levels of ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) and fibronectin (FN) in hPDLCs were determined via western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assays. Expression levels of ADAMTS9 and FN in mice were assessed via immunohistochemical staining. Additionally, the relative expression of long non-coding RNA (lncRNA) ADAMTS9-antisense RNA 2 (ADAMTS9-AS2) was assessed via quantitative real-time polymerase chain reaction. ADAMTS9-AS2 knockdown was performed to confirm its function in hPDLCs. RESULTS: Mechanical compression induced changes in the morphology of hPDLCs. It also promoted migration and simultaneous upregulation of FN and downregulation of ADAMTS9, a fibronectinase. The mouse OTM model showed the same expression patterns of the two proteins on the compression side of the periodontium of the moved teeth. RNA sequencing revealed that lncRNA ADAMTS9-AS2 expression was significantly upregulated in hPDLCs under mechanical compression. After knocking down ADAMTS9-AS2, hPDLCs migration was significantly inhibited. ADAMTS9 expression was increased as FN expression decreased compared to that in the control group. Moreover, knockdown of ADAMTS9-AS2 reduced the effect of mechanical compression on hPDLCs migration and reversed the expression change of ADAMTS9 and FN. RNA immunoprecipitation revealed direct binding between ADAMTS9-AS2 and ADAMTS9 protein. CONCLUSION: Our study suggests that mechanical compression induces the expression of ADAMTS9-AS2, which directly binds to ADAMTS9 and inhibits its function, leading to the promotion of downstream FN expression and ECM remodeling to facilitate hPDLCs migration and maintain the stability of the periodontium.


Asunto(s)
ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ligamento Periodontal/metabolismo , Proteína ADAMTS9/genética , Proteína ADAMTS9/metabolismo , Fibronectinas , Movimiento Celular , Proliferación Celular/genética
3.
Orthod Craniofac Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712649

RESUMEN

BACKGROUND AND OBJECTIVES: The alveolar bone remodelling promoted by reasonable mechanical force triggers orthodontic tooth movement (OTM). The generation of osteoclasts is essential in this process. However, the mechanism of mechanical force mediating osteoclast differentiation remains elusive. Small nucleolar RNA host gene 5 (SNHG5), which was reported to mediate the osteogenic differentiation of bone marrow mesenchymal stem cells in our previous study, was downregulated in human periodontal ligament cells (hPDLCs) under mechanical force. At the same time, the RANKL/OPG ratio increased. Based on this, we probed into the role of SNHG5 in osteoclast formation during OTM and the relevant mechanism. MATERIALS AND METHODS: SNHG5 and the RANKL/OPG ratio under different compressive forces were detected by western blotting (WB) and qRT-PCR. Impact of overexpression or knockdown of SNHG5 on osteoclast differentiation was detected by qRT-PCR, WB and transwell experiments. The combination of SNHG5 and C/EBPß was verified by RNA immunoprecipitation and RNA pull-down assays. The expression of SNHG5 and osteoclast markers in gingiva were analysed by qRT-PCR and the paraffin sections of periodontal tissues were used for histological analysis. RESULTS: Compressive force downregulated SNHG5 and upregulated the RANKL/OPG ratio in hPDLCs. Overexpression of SNHG5 inhibited RANKL's expression and osteoclast differentiation. SNHG5 combined with C/EBPß, a regulator of osteoclast. The expression of SNHG5 in periodontal tissue decreased during OTM. CONCLUSION: SNHG5 inhibited osteoclast differentiation during OTM, achieved by affecting RANKL secretion, which may provide a new idea to interfere with bone resorption during orthodontic treatment.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38904565

RESUMEN

INTRODUCTION: This study evaluated the labial and lingual cortical bone remodeling characteristics of mandibular central incisors after retraction, which remain controversial among orthodontists. METHODS: Cortical bone remodeling and central incisor movement of 33 patients (aged 23.64 ± 4.30 years) who underwent mandibular first premolar extraction and incisor retraction at the crestal (S1), midroot (S2), and apical (S3) levels were analyzed using superimposed cone-beam computed tomography images on the basis of voxel-based registration of the mandibular stable region. Multivariate linear regression was used to explore the relationships between labial bone remodeling/tooth movement (BT) ratios and factors such as the ANB angle, mandibular plane angle (Mp-SN), and incisor movement patterns. The patients were divided into 4 groups according to the lingual cortical bone remodeling condition and the relationship between posttreatment incisor roots and the original lingual cortical bone border. At the 3 levels (S1, S2, and S3), the classifications of cortical bone remodeling of the mandibular incisors were calculated; t tests were used to compare the amount of labial and lingual bone remodeling, BT ratios, and lingual bone remodeling/root over the original border (BRo) ratios. RESULTS: The mean labial BT ratios at all 3 levels were close to 1. Multivariate linear regression indicated that the tooth movement pattern negatively correlated with the BT ratio at the S2 and S3 levels (P <0.05). Lingual bone apposition occurs when the root penetrates the original lingual cortical bone border in most patients. BRo ratios can more accurately reflect the inherent remodeling ability of the lingual cortical bone than BT ratios. The mean lingual BRo ratios were (1) S1 level: mandibular left central incisor (T31), 0.87 ± 0.25 and mandibular right incisor (T41), 0.86 ± 0.25; (2) S2 level: T31, 0.81 ± 0.12 and T41, 0.80 ± 0.22; and (3) S3 level: T31, 0.76 ± 0.20 and T41, 0.83 ± 0.26. There was no significant difference between labial BT ratios and lingual BRo ratios at the S2 and S3 levels. CONCLUSIONS: The amount of labial cortical bone resorption caused by mandibular incisor retraction showed varied relationships with the amount of tooth movement. Bodily retraction may decrease the labial BT ratios at the S2 and S3 levels. Active lingual cortical bone apposition occurred when the roots penetrated the original lingual border and exhibited strong remodeling ability.

5.
Eur J Orthod ; 46(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134411

RESUMEN

BACKGROUND/OBJECTIVES: To compare the biomechanical characteristics of maxillary molar distalization with clear aligners in conjunction with three types of miniscrew anchorage. MATERIALS/METHODS: Three-dimensional (3D) finite element models of maxillary molar distalization with clear aligners and three types of miniscrew anchorage were established, including (A) control group, (B) direct buccal miniscrew anchorage group, (C) direct palatal miniscrew anchorage group, and (D) indirect buccal miniscrew anchorage group. The 3D displacement of maxillary teeth and the principal stress (maximum tensile and compressive stress) on the root and periodontal ligament (PDL) during molar distalization were recorded. RESULTS: The tooth displacement pattern during maxillary molar distalization in the four groups showed similarities, including labial tipping of anterior teeth, mesial and buccal tipping of premolars, and distal and buccal tipping of molars, but with varying magnitudes. Group C exhibited the greatest molar distalization, with the first molar achieving 0.1334 mm of crown distalization. Group D demonstrated a notable buccal crown movement (0.0682 mm) and intrusion (0.0316 mm) of the first premolar. Compared to Groups A and B, Groups C and D showed less labial crown tipping of the central incisor. Group B showed the greatest amount of maxillary incisor intrusion (central incisor: 0.0145 mm, lateral incisor: 0.0094 mm). Moreover, Groups C and D displayed significantly lower levels of compressive and tensile stress in the roots and PDL of the maxillary central and lateral incisors. LIMITATION: Molar distalization is a dynamic process involving sequential tooth movement stages; however, our research primarily examined the tooth movement patterns in the initial aligner. CONCLUSIONS/IMPLICATIONS: The use of miniscrew anchorage, especially direct palatal miniscrew anchorage, may enhance the treatment efficacy of maxillary molar distalization with clear aligners, leading to increased molar distalization, reduced mesial movement of premolars, and minimized labial tipping of anterior teeth.


Asunto(s)
Maloclusión Clase II de Angle , Aparatos Ortodóncicos Removibles , Humanos , Maloclusión Clase II de Angle/terapia , Análisis de Elementos Finitos , Cefalometría/métodos , Técnicas de Movimiento Dental/métodos , Diente Molar , Maxilar
6.
BMC Oral Health ; 24(1): 467, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632555

RESUMEN

BACKGROUND: The temporomandibular joint (TMJ) is closely related to the dynamic balance and stability of mandibular function and orthodontic treatment. Skeletal class II female patients are thought to be at high risk for TMJ disease. The relationship between the TMJ and craniofacial structures is still controversial. This study compared the morphology and position of the TMJ in skeletal class II adolescents and adults with various vertical facial types using cone-beam computed tomography (CBCT). MATERIALS AND METHODS: A total of 117 skeletal class II patients were divided into three groups according to the FH-GoGn angle (hypodivergent, normodivergent and hyperdivergent), with 40 class I normodivergent patients serving as controls. Each group contained two age subgroups (adolescents: 11-14 years old, adults: 18-35 years old). The size (condylar length, height, long and short axis diameter, glenoid fossa width and depth) and shape (condylar neck inclination, condylar head angle and long axis angle, articular eminence inclination) of the condyle and fossa, joint space (anterior, superior, posterior, mesial and lateral), and position of the fossa (vertical, transverse, and anteroposterior distance) and condyle were measured and compared using CBCT. RESULTS: Class II hypodivergent patients exhibited the greatest condylar length, height, and long- and short-axis diameter; steepest articular eminence; deepest fossa depth; largest superior, mesial and lateral joint spaces; and highest fossa position in both age groups. The manifestations of class II hyperdivergent patients were mostly the opposite. In adults, except for the condylar long axis angle, the measurements of the condyle increased differently among skeletal patterns, while the measurements of the fossa decreased, as the joint spaces and fossa position remained approximately stable compared with those in adolescents. CONCLUSION: The vertical skeletal pattern, rather than the class II sagittal skeletal pattern, may be the main factor affecting the morphology and position of the TMJ. Attention should be given to the TMJ area in hyperdivergent patients with a relatively poor-fit condyle-fossa relationship. The changes in the TMJ with age were mainly morphological rather than positional and varied with skeletal pattern.


Asunto(s)
Cóndilo Mandibular , Articulación Temporomandibular , Adulto , Adolescente , Humanos , Femenino , Niño , Adulto Joven , Estudios Transversales , Mandíbula , Cara , Tomografía Computarizada de Haz Cónico/métodos
7.
Plant J ; 111(2): 567-582, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35603488

RESUMEN

Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.


Asunto(s)
Señales de Direccionamiento al Peroxisoma , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Animales , Peroxisomas/metabolismo , Plantas
8.
J Cell Physiol ; 238(9): 2147-2160, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37475648

RESUMEN

Repair of orthodontic external root resorption and periodontal tissue dysfunction induced by mechanical force remains a clinical challenge. Cementoblasts are vital in cementum mineralization, a process important for restoring damaged cementum. Despite autophagy plays a role in mineralization under various environmental stimuli, the underlying mechanism of autophagy in mediating cementoblast mineralization remains unclear. Here we verified that murine cementoblasts exhibit compromised mineralization under compressive force. Autophagy was indispensable for cementoblast mineralization, and autophagic activation markedly reversed cementoblast mineralization and prevented cementum damage in mice during tooth movement. Subsequently, messenger RNA sequencing analyses identified periostin (Postn) as a mediator of autophagy and mineralization in cementoblasts. Cementoblast mineralization was significantly inhibited following the knockdown of Postn. Furthermore, Postn silencing suppressed Wnt signaling by modulating the stability of ß-catenin. Together our results highlight the role of autophagy in cementoblast mineralization via Postn/ß-catenin signaling under compressive force and may provide a new strategy for the remineralization of cementum and regeneration of periodontal tissue.


Asunto(s)
Autofagia , Calcificación Fisiológica , Moléculas de Adhesión Celular , Cemento Dental , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Diferenciación Celular , Línea Celular , Cemento Dental/fisiología , Vía de Señalización Wnt , Moléculas de Adhesión Celular/metabolismo , Fuerza Compresiva
9.
Small ; 19(50): e2302922, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649222

RESUMEN

The notorious limitation of conventional surgical excision of primary tumor is the omission of residual and occult tumor cells, which often progress to recurrence and metastasis, leading to clinical treatment failure. The therapeutic vaccine is emerging as a promising candidate for dealing with the issue of postsurgical tumor residuals or nascent metastasis. Here, a flexible and modularized nanovaccine scaffold based on the SpyCatcher003-decorated shell (S) domain of norovirus (Nov) is employed to support the presentation of varied tumor neoantigens fused with SpyTag003. The prepared tumor neoantigen-based nanovaccines (Neo-NVs) are able to efficiently target to lymph nodes and engage with DCs in LNs, triggering strong antigen-specific T-cell immunity and significantly inhibiting the growth of established orthotopic 4T1 breast tumor in mice. Further, the combination of Neo-NVs and anti-PD-1 monoclonal antibody (mAb) produces significant inhibition on postsurgical tumor recurrence and metastasis and induces a long-lasting immune memory. In conclusion, the study provides a simple and reliable strategy for rapid preparing personalized neoantigens-based cancer vaccines and engaging checkpoint treatment to restore the capability of tumor immune surveillance and clearance in surgical patients.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico , Recurrencia Local de Neoplasia , Inmunoterapia , Neoplasias/terapia
10.
FASEB J ; 36(1): e22120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958157

RESUMEN

The mineralization capability of cementoblasts is the foundation for repairing orthodontic treatment-induced root resorption. It is essential to investigate the regulatory mechanism of mineralization in cementoblasts under mechanical compression to improve orthodontic therapy. Autophagy has a protective role in maintaining cell homeostasis under environmental stress and was reported to be involved in the mineralization process. Long noncoding RNAs are important regulators of biological processes, but their functions in compressed cementoblasts during orthodontic tooth movement remain unclear. In this study, we showed that compressive force downregulated the expression of mineralization-related markers. LincRNA-p21 was strongly enhanced by compressive force. Overexpression of lincRNA-p21 downregulated the expression of mineralization-related markers, while knockdown of lincRNA-p21 reversed the compressive force-induced decrease in mineralization. Furthermore, we found that autophagy was impeded in compressed cementoblasts. Then, overexpression of lincRNA-p21 decreased autophagic activity, while knockdown of lincRNA-p21 reversed the autophagic process decreased by mechanical compression. However, the autophagy inhibitor 3-methyladenine abolished the lincRNA-p21 knockdown-promoted mineralization, and the autophagy activator rapamycin rescued the mineralization inhibited by lincRNA-p21 overexpression. Mechanistically, the direct binding between lincRNA-p21 and FoxO3 blocked the expression of autophagy-related genes. In a mouse orthodontic tooth movement model, knockdown of lincRNA-p21 rescued the impeded autophagic process in cementoblasts, enhanced cementogenesis, and alleviated orthodontic force-induced root resorption. Overall, compressive force-induced lincRNA-p21 inhibits the mineralization capability of cementoblasts by impeding the autophagic process.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Autofagia , Calcificación Fisiológica , Fuerza Compresiva , Cemento Dental/metabolismo , Regulación hacia Abajo , ARN Largo no Codificante/biosíntesis , Animales , Masculino , Ratones
11.
FASEB J ; 36(11): e22590, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36208289

RESUMEN

Many circular RNAs (circRNAs) involved in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) have recently been discovered. The role of circHIPK3 in osteogenesis has yet to be determined. Cell transfection was conducted using small-interfering RNAs (siRNAs). Expression of osteogenic markers were detected by quantitative reverse transcription-polymerase chain reaction, western blotting analysis, and immunofluorescence staining. Ectopic bone formation models in nude mice were used to examined the bone formation ability in vivo. The autophagy flux was examined via western blotting analysis, immunofluorescence staining and transmission electron microscopy analysis. RNA immunoprecipitation (RIP) analysis was carried out to analyze the binding between human antigen R (HUR) and circHIPK3 or autophagy-related 16-like 1 (ATG16L1). Actinomycin D was used to determine the mRNA stability. Our results demonstrated that silencing circHIPK3 promoted the osteogenesis of hBMSCs while silencing the linear mHIPK3 did not affect osteogenic differentiation, both in vivo and in vitro. Moreover, we found that knockdown of circHIPK3 activated autophagy flux. Activation of autophagy enhanced the osteogenesis of hBMSCs and inhibition of autophagy reduced the osteogenesis through using autophagy regulators chloroquine and rapamycin. We also discovered that circHIPK3 and ATG16L1 both bound to HUR. Knockdown of circHIPK3 released the binding sites of HUR to ATG16L1, which stabilized the mRNA expression of ATG16L1, resulting in the upregulation of ATG16L1 and autophagy activation. CircHIPK3 functions as an osteogenesis and autophagy regulator and has the potential for clinical application in the future.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Autofagia/genética , Células de la Médula Ósea , Diferenciación Celular/fisiología , Células Cultivadas , Cloroquina , Dactinomicina , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Osteogénesis/genética , ARN Circular/genética , ARN Mensajero/metabolismo , Sirolimus/metabolismo
12.
FASEB J ; 36(12): e22627, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36314562

RESUMEN

Mechanical stress regulates various cellular functions like cell inflammation, immune responses, proliferation, and differentiation to maintain tissue homeostasis. However, the impact of mechanical signals on macrophages and the underlying mechanisms by which mechanical force regulates bone remodeling during orthodontic tooth movement remain unclear. NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to promote osteoclastic differentiation to regulate alveolar bone resorption. But the relationship between the compressive force and NLRP3 inflammasome in macrophages remains unknown. In this study, immunohistochemical staining results showed elevated expression of NLRP3 and interleukin-1ß, as well as an increased number of macrophages expressing NLRP3, on the compression side of the periodontal tissues, after force application for 7 days. Furthermore, the number of tartrate-resistant acid phosphatase-positive osteoclasts, and the mRNA and protein expression levels of osteoclast-related genes in the periodontal tissue decreased in the Nlrp3-/- mice compared to the WT mice group after orthodontic movement. In vitro mechanical force activates the NLRP3 inflammasome and inhibits autophagy. Intraperitoneal injection of the autophagy inhibitor 3-methyladenine in Nlrp3-/- mice promoted orthodontic tooth movement. This result indicates that the absence of NLRP3 inflammasome activation can be partially compensated for by autophagy inhibitors. Mechanistically, force-induced activation of the NLRP3 inflammasome in macrophages via the cGAS/P2X7R axis. In conclusion, compressive force regulates orthodontic tooth movement via activating the NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Técnicas de Movimiento Dental , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo
13.
Am J Med Genet A ; 191(11): 2775-2782, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37507849

RESUMEN

Mutations in the CNOT1 gene lead to an incurable rare neurological disorder mainly manifested as a clinical spectrum of intellectual disability, developmental delay, seizures, and behavioral problems. In this study, we investigated a classical splice site variant of CNOT1 (c.1343+1G>T) associated with neurodevelopmental disorders, which was a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. To link CNOT1 dysfunction with the neurodevelopmental phenotype observed in a patient, in vitro minigene assay was used to verify the effect of CNOT1 gene splice site variant c.1343+1G>T on mRNA splicing. We also explored the impact of transient transfection introducing modified U1 snRNA on correcting the splicing variant. Through minigene expression in mammalian cells, we demonstrated that the variant induced complete exon 12 skipping, which explained the patient's clinical condition and provided additional genetic diagnosis evidence for the clinical significance of the variant. Moreover, we confirmed that the aberrant splice pattern could be partially corrected by the modified U1 snRNA at the mRNA level, which provided strong evidence for the therapeutic potential of modified U1 snRNA in neutralizing the hazardous effect of incorrect splicing patterns.


Asunto(s)
Trastornos del Neurodesarrollo , Empalme del ARN , Animales , Humanos , Virulencia , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trastornos del Neurodesarrollo/genética , Sitios de Empalme de ARN/genética , Mamíferos/genética , Mamíferos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Nanobiotechnology ; 21(1): 74, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864424

RESUMEN

Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, ß-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1ß, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of ß-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , beta-Glucanos , Humanos , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Neoplasias/tratamiento farmacológico , beta-Glucanos/farmacología , Inmunización , Hidrogeles
15.
J Nanobiotechnology ; 21(1): 326, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684628

RESUMEN

Vaccine is one of the most promising strategies for cancer immunotherapy; however, there are no therapeutic cancer vaccine achieving significant clinical efficacy till now. The main limiting factors include the immune suppression and escape mechanisms developed by tumor and not enough capacity of vaccines to induce a vigorous anti-tumor immunity. This study aimed to develop a strategy of membrane-based biomimetic nanovaccine and investigate the immunological outcomes of utilizing the unique immunostimulatory mechanisms derived of immunogenic cell death (ICD) and of fulfilling a simultaneous nanoscale delivery of a highlighted tumor antigen and broad membrane-associated tumor antigens in the vaccine design. TC-1 tumor cells were treated in vitro with a mixture of mitoxantrone and curcumin for ICD induction, and then chitosan (CS)-coated polylactic co-glycolic acid (PLGA) nanoparticles loaded with HPV16 E744-62 peptides were decorated with the prepared ICD tumor cell membrane (IM); further, the IM-decorated nanoparticles along with adenosine triphosphate (ATP) were embedded with sodium alginate (ALG) hydrogel, And then, the immunological features and therapeutic potency were evaluated in vitro and in vivo. The nanovaccine significantly stimulated the migration, antigen uptake, and maturation of DCs in vitro, improved antigen lysosome escape, and promoted the retention at injection site and accumulation in LNs of the tumor antigen in vivo. In a subcutaneously grafted TC-1 tumor model, the therapeutic immunization of nanovaccine elicited a dramatical antitumor immunity. This study provides a strategy for the development of tumor vaccines.


Asunto(s)
Vacunas contra el Cáncer , Muerte Celular Inmunogénica , Inmunización , Inmunoterapia , Antígenos de Neoplasias
16.
Oral Dis ; 29(4): 1632-1643, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35189007

RESUMEN

OBJECTIVES: Non-syndromic cleft palate only (NSCPO) is one of the most common craniofacial birth defects with largely undetermined genetic etiology. It has been established that Grainyhead-like 3 (GRHL3) plays an essential role in the pathogenesis of NSCPO. This study aimed to identify and verify the first-reported GRHL3 variant underlying NSCPO among the Chinese cohort. METHODS: We performed whole-exome sequencing (WES) on a Chinese NSCPO patient and identified a rare variant of GRHL3 (p.Arg391His). A validated deleterious variant p.Arg391Cys was introduced as a positive control. Zebrafish embryos injection, reporter assays, live-cell imaging, and RNA sequencing were conducted to test the pathogenicity of the variants. RESULTS: Zebrafish embryos microinjection demonstrated that overexpression of the variants could disrupt the normal development of zebrafish embryos. Reporter assays showed that Arg391His disturbed transcriptional activity of GRHL3 and exerted a dominant-negative effect. Interestingly, Arg391His and Arg391Cys displayed distinct nuclear localization patterns from that of wild-type GRHL3 in live-cell imaging. Bulk RNA sequencing suggested that the two variants changed the pattern of gene expression. CONCLUSIONS: In aggregate, this study identified and characterized a rare GRHL3 variant in NSCPO, revealing the critical role of Arginine 391 in GRHL3. Our findings will help facilitate understanding and genetic counseling of NSCPO.


Asunto(s)
Labio Leporino , Fisura del Paladar , Animales , Labio Leporino/genética , Fisura del Paladar/genética , Fisura del Paladar/patología , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Orthod Craniofac Res ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062985

RESUMEN

OBJECTIVE: To evaluate alveolar bone remodelling and stability of mandibular incisors in adult orthodontic extraction patients. MATERIALS AND METHODS: Cone-beam computed tomography images of 25 adult patients undergoing extraction were collected before orthodontic treatment (T1), after orthodontic treatment (T2), and after at least 1 year of retention (T3). The labial and lingual alveolar bone heights (ABH), thickness (ABT), and tooth movement of the mandibular incisors were measured during the retraction (T2-T1) and retention (T3-T2) periods. According to the tooth movement during the retention period, the mandibular incisors were further divided into stable and unstable groups, and the correlation between L1-BMe and stability was evaluated. RESULTS: The labial and lingual ABHs significantly increased after orthodontic treatment and decreased during the retention period. The lingual ABH was 7.36 ± 2.27 mm at T2 and 5.37 ± 1.98 mm at T3, indicating a great bone remodelling capacity. The labial ABT exhibited a significant increase during orthodontic treatment and a slight decrease during the retention period, while the lingual ABT showed an opposite trend. During the retention period, the root apex moved labially into the alveolar bone housing. L1-BMe significantly increased during orthodontic treatment and decreased during the retention period. Compared to the stable group, lingual ABH and L1-BMe at T2 was significantly higher, and lingual ABT was smaller in the unstable group. CONCLUSION: Post-treatment lingual alveolar bone defects of the mandibular incisors could recover to some extent during the retention period. There was a negative correlation between post-treatment L1-BMe and mandibular incisor stability.

18.
Orthod Craniofac Res ; 26(2): 197-206, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36004578

RESUMEN

OBJECTIVE: The objective of the study was to explore and validate the consensus of orthodontic experts on the assessment of orthodontic treatment outcomes based on subjective and objective analysis. MATERIALS AND METHODS: The research consisted of two parts: the exploration and verification of expert consensus. First, a sample of 108 cases randomly selected from six dental schools in China were evaluated by 69 orthodontic experts and measured by researchers based on post-treatment study casts and lateral cephalograms, respectively. Then, through statistical analysis, the objective indicators significantly correlated with experts' subjective evaluations were selected, their weights were determined, and the critical values of satisfactory, acceptable and unacceptable grades were screened. Subsequently, another sample of 72 cases were evaluated by another 36 orthodontic experts, and the subjective evaluation results were compared with the objective measurement results. RESULTS: There were six model indicators and seven cephalometric indicators being significantly correlated with the experts' subjective evaluations, including occlusal contact, overjet, midline, interproximal contact, alignment, occlusal relationship, L1/NB, ANB, SN/OP, U1/SN, LL-EP, Cm-Sn-UL and Ns-Prn-Pos, with a cumulative R2 of 0.704. In the verification part, the correlation coefficient between the 36 experts' subjective scores and objective regression scores was 0.716 (P < .001); the correlation coefficient between the 36 experts' subjective grades and objective grades was 0.757 (P < .001). CONCLUSIONS: Orthodontic experts had good consistency in the subjective evaluation of the combined records of post-treatment study casts and lateral cephalograms. The objective indicators selected from subjective and objective analysis had good reliability and validity and could further improve the existing occlusal indices.


Asunto(s)
Consenso , Reproducibilidad de los Resultados , Resultado del Tratamiento , Radiografía , Cefalometría
19.
Am J Orthod Dentofacial Orthop ; 164(1): 123-130, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36872177

RESUMEN

INTRODUCTION: This study aimed to investigate the efficacy of molar distalization with or without anterior teeth retraction. METHODS: Forty-three patients who received maxillary molar distalization with clear aligners were retrospectively enrolled and further divided into 2 groups: a retraction group (with maxillary incisor retraction ≥2 mm in ClinCheck) and a nonretraction group (without anteroposterior movement or with the labial movement of the maxillary incisor in ClinCheck). Pretreatment and posttreatment models were collected and laser-scanned to obtain the virtual models. Three-dimensional digital assessments of molar movement, anterior retraction and arch width were analyzed in the reverse engineering software Rapidform 2006. To calculate the efficacy of tooth movement, the achieved tooth movement assessed on the virtual model was compared with the predicted tooth movement in ClinCheck. RESULTS: The achieved efficacy rates of molar distalization for the maxillary first and second molars were 36.48% and 41.94%, respectively. There was a significant difference in molar distalization efficacy between the retraction group (31.50% at the first molar and 35.63% at the second molar) and the nonretraction group (48.14% at the first molar and 52.51% at the second molar). In the retraction group, the efficacy of incisor retraction was 56.10%. The efficacy of dental arch expansion was more than 100% at the first molar levels in the retraction group and at the second premolar and first molar levels in the nonretraction group. CONCLUSIONS: There is a discrepancy between the outcome and the predicted maxillary molar distalization with clear aligners. The efficacy of molar distalization with clear aligners was significantly affected by anterior teeth retraction, and the arch width significantly increased at the premolar and molar levels.


Asunto(s)
Maloclusión Clase II de Angle , Aparatos Ortodóncicos Removibles , Humanos , Estudios Retrospectivos , Maloclusión Clase II de Angle/terapia , Diente Molar , Técnicas de Movimiento Dental/métodos , Maxilar , Cefalometría
20.
Am J Orthod Dentofacial Orthop ; 163(2): 210-221, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36328904

RESUMEN

INTRODUCTION: The objective of this study was to explore the effect of augmented corticotomy (AC) on anterior alveolar bone morphology in presurgical orthodontic treatment for skeletal Class III malocclusion. METHODS: Thirty-six surgical patients with skeletal Class III malocclusion with high-angle were included: 18 (AC group) accepted AC surgery during presurgical orthodontic treatment, and 18 (control group) accepted traditional presurgical orthodontic treatment. Cone-beam computed tomography scans were obtained before treatment (T0) and after presurgical orthodontic treatment (T1). The alveolar bone morphology, root length, dehiscence, and movement of mandibular central incisors were measured by cone-beam computed tomography using Dolphin software. Statistical analyses were performed with independent-sample t tests, paired t tests, and multiple linear regression. RESULTS: After presurgical orthodontic treatment, the whole alveolar bone thickness at each level, alveolar bone area, and alveolar bone height decreased significantly in the control group but increased or remained unchanged in the AC group. In the AC group, the lower the labial alveolar bone height at T0 was, the greater the increase after T1; the change in alveolar bone thickness was related to ΔL1-MP and sex. At T0, the incidences of dehiscence were similar in the 2 groups, ranging from 11.11% to 16.67%. At T1, the labial and lingual incidences of dehiscence in the AC group were 0% and 27.78%, compared with 55.56% and 66.67% in the control group. CONCLUSIONS: During presurgical orthodontic treatment, AC is effective in preventing alveolar bone resorption and dehiscence without additional root resorption. AC can be recommended for high-angle skeletal Class III patients with thin alveolar bone around anterior teeth during presurgical orthodontic treatment.


Asunto(s)
Pérdida de Hueso Alveolar , Maloclusión de Angle Clase III , Humanos , Pérdida de Hueso Alveolar/prevención & control , Huesos , Cefalometría/métodos , Tomografía Computarizada de Haz Cónico , Incisivo , Maloclusión de Angle Clase III/cirugía , Mandíbula/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA