RESUMEN
The homeostasis of multicellular organisms requires terminally differentiated cells to preserve their lineage specificity. However, it is unclear whether mechanisms exist to actively protect cell identity in response to environmental cues that confer functional plasticity. Regulatory T (Treg) cells, specified by the transcription factor Foxp3, are indispensable for immune system homeostasis. Here, we report that conserved noncoding sequence 2 (CNS2), a CpG-rich Foxp3 intronic cis-element specifically demethylated in mature Tregs, helps maintain immune homeostasis and limit autoimmune disease development by protecting Treg identity in response to signals that shape mature Treg functions and drive their initial differentiation. In activated Tregs, CNS2 helps protect Foxp3 expression from destabilizing cytokine conditions by sensing TCR/NFAT activation, which facilitates the interaction between CNS2 and Foxp3 promoter. Thus, epigenetically marked cis-elements can protect cell identity by sensing key environmental cues central to both cell identity formation and functional plasticity without interfering with initial cell differentiation.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/citología , Animales , Secuencia de Bases , Diferenciación Celular , Secuencia Conservada , Islas de CpG , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Expresión Génica , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/metabolismo , Ratones , Datos de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Linfocitos T Reguladores/metabolismoRESUMEN
OBJECTIVE: Back pain and radiculopathy caused by disc herniation are major health issues worldwide. While macrophages are key players in disc herniation induced inflammation, their roles and origins in disease progression remain unclear. We aim to study the roles of monocytes and derivatives in a mouse model of disc herniation. METHODS: Using a CCR2-CreER; R26R-EGFP (Ai6) transgenic mouse strain, we fate-mapped C-C chemokine receptor type 2 (CCR2) expressing monocytes and derivatives at disc herniation sites, and employed a CCR2RFP/RFP mouse strain and a CCR2-specific antagonist to study the effects of CCR2+ monocytes on local inflammatory responses, pain level, and disc degeneration by immunostaining, flow cytometry, and histology. RESULTS: CCR2+ monocytes (GFP+) increased at the sites of disc hernia over postoperative day 4, 6, and 9 in CCR2-CreER; Ai6 mice. F4/80+ cells increased, and meanwhile, CD11b+ cells trended downward. Co-localization analysis revealed that both GFP+CD11b+ and GFP+F4/80+ constituted the majority of CD11b+ and F4/80+ cells at disc hernia sites. Fluorescence activated cell sorter purified GFP+ cells exhibited higher cytokine expressions than GFP- cells. Inhibition of CCR2 signaling reduced infiltration of monocytes and macrophages, alleviated pain, maintained disc height, and reduced osteoclast activity in adjacent cortical bone for up to 1 month. CONCLUSION: Our findings suggest that circulating CCR2+ monocytes play important roles in initiating and promoting the local inflammatory responses, pain sensitization, and degenerative changes after disc herniation, and thus may serve as therapeutic targets for disc herniation induced back and leg pain.
Asunto(s)
Desplazamiento del Disco Intervertebral , Radiculopatía , Ratones , Animales , Monocitos/metabolismo , Receptores de Quimiocina/metabolismo , Desplazamiento del Disco Intervertebral/complicaciones , Desplazamiento del Disco Intervertebral/metabolismo , Ratones Transgénicos , Dolor/metabolismo , Ratones Endogámicos C57BLRESUMEN
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas R-SNARE/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
BACKGROUND: Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE: This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS: The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS: In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS: Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.
Asunto(s)
Resistencia a la Insulina , Insulina , Ratones , Animales , Insulina/metabolismo , Mioquinas , Interleucina-6/genética , Interleucina-6/metabolismo , Ácido Eicosapentaenoico/farmacología , Fibronectinas/metabolismo , Señalización del Calcio , Insulina Regular Humana , Ácidos Docosahexaenoicos/farmacologíaRESUMEN
The oxygen level in the tumor microenvironment (TME) plays a critical role in regulating cell fates such as proliferation, migration, apoptosis, and so forth. To better elucidate how hypoxia affects tumor cell behaviors, a series of microfluidic strategies have been utilized to generate an oxygen gradient covering both hypoxia and normoxia conditions. However, in most studies, some chemicals are introduced into microfluidic chips, causing the potential of their poor biocompatibility. The common oxygen gradient with linear variation does not allow the effects of specific oxygen concentrations on tumor cells to be analyzed accurately. In this paper, based on the physical method of gas diffusion, a microfluidic device integrated with an oxygen gradient generator is proposed for investigating effects of different hypoxia levels on responses of tumor cells. This device consists of three layers, i.e., upper layer, thin film layer, and bottom layer. The upper layer is used for introducing the initial gas and generating an oxygen gradient in the form of gas. The bottom layer is used for introducing cells and culture medium. The thin film layer separates the former two layers, allowing the gas to diffuse from the top to the bottom through it. The oxygen gradient in the bottom layer is finally generated in the form of dissolved oxygen. The device is fabricated using microfabrication technology. The effects of structural and working parameters of the device on the oxygen gradient are evaluated by finite element simulation. The oxygen gradient in cell culture channels is characterized by using oxygen-sensitive fluorescence materials. The proliferation and morphology of HeLa cells under specific oxygen levels are compared after culturing for 48 h. The oxygen gradient with a ladder-like distribution demonstrates that this microfluidic device can provide a prospective experimental platform for in vitro cell studies and revelation of the mechanism of tumor metastasis associated with a specific hypoxic microenvironment.
Asunto(s)
Oxígeno , Humanos , Oxígeno/química , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Células HeLa , Microambiente Tumoral , Hipoxia de la CélulaRESUMEN
Cytomegalovirus (CMV) reactivation remains one of the major and life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Yet, there is still a lack of safe and effective ways to prevent CMV reactivation in allo-HSCT patients. Here, we retrospectively analyzed a cohort of patients who underwent HSCT at our transplant center between 2018 and 2022 to evaluate the efficacy of prophylactic CMV-specific intravenous immunoglobulin (CMV-IVIg) against CMV reactivation. After Propensity Score Matching, the CMV reactivation rate was significantly decreased in the CMV-IVIg group (HR, 2.952; 95% CI,1.492-5.841; P = .002) compared with the control group. Additionally, the time duration of CMV reactivation (P = .001) and bacterial infection rate (P = .013) were significantly lower in the CMV-IVIg group. Moreover, prophylactic CMV-IVIg was more effective in CMV seropositive patients who received ATG as part of GVHD prevention (HR, 8.225; 95% CI,1.809-37.39; P = .006). In conclusion, CMV-IVIg is considered an effective and safe way to prevent CMV reactivation in HSCT recipients, which may be related to the acceleration of immune reconstitution in the early stage after transplantation.
Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Humanos , Citomegalovirus , Inmunoglobulinas Intravenosas/uso terapéutico , Infecciones por Citomegalovirus/etiología , Infecciones por Citomegalovirus/prevención & control , Infecciones por Citomegalovirus/tratamiento farmacológico , Estudios Retrospectivos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Anticuerpos AntiviralesRESUMEN
The surface modification technique is applied in microfluidic devices to modify wettability and achieve different flow velocities. Currently available methods for poly(dimethylsiloxane) (PDMS) surfaces may reliably induce wettability changes, but only one area can be altered at a time. This work introduces the controlled gradient oxygen plasma modification (CGPM) technique, which layers several resin masks with varying porosities on top of the PDMS surface. Selective wettability of the PDMS surface can be achieved by varying the oxygen plasma density above the modified material's surface by manipulation of the porosity value. Through the implementation of the COMSOL plasma module, the impact of the mask's porosity, through-hole size, distribution, and distance from the PDMS surface on wettability was studied. The suggested CGPM approach was characterized by contact angle measurements. During the 25-second CGPM procedure, the PDMS surface's contact angle continually changed from 8.77° to 76.98°. An integrated microfluidic device was created and manufactured to identify D-dimers to illustrate this method. In comparison with standard oxygen plasma treatment, the D-dimer assay was finished in 10 minutes and had a dynamic range of 1-1000 ng mL-1, with a peak fluorescence signal augmentation of 78.3% and an average fluorescence intensity enhancement of 31.1%.
RESUMEN
In mammals, interleukin 34 (IL-34) is a ligand for macrophage colony-stimulating factor receptor (M-CSFR), promoting inflammatory responses and inducing the synthesis and secretion of various cytokines. However, studies on its function in lower vertebrates is limited, and its evolutionary relationship with homologous molecules in mammals remains unclear. In this study, two IL-34-encoding genes were cloned and identified in common carp (Cyprinus carpio L.), designated as CcIL-34A and CcIL-34B, with an amino acid sequence similarity of 77.7 %. Gene synteny analysis revealed that the IL-34 gene loci are relatively conserved, and both are located downstream of SF3B3. The expression patterns of CcIL-34s were analyzed using qRT-PCR, and this showed that they are expressed across all tested tissues, with higher levels in the liver, spleen, and head kidney and lower levels in the gills and intestines. Following infection with Aeromonas hydrophila, the mRNA expression levels of CcIL-34s in the gills, head kidney, intestines, and spleen were significantly upregulated. Immunofluorescence was also employed to assess changes in CcIL-34 protein expression, showing a significant increase in carp spleens 24 h after A. hydrophila infection, suggesting that CcIL-34s contribute to host defense against this bacterium. To investigate the immunological function of IL-34 in vivo, pc-CcIL-34A and pc-CcIL-34B eukaryotic expression plasmids were constructed and injected intramuscularly into fish. Five days after injection, the expression levels of inflammation-related cytokines in the head kidney and spleen were significantly altered. Furthermore, 24 h post-A. hydrophila infection, the bacterial loads in the liver, spleen, and kidneys were significantly reduced. Ten days post-infection, the survival rates in the groups with CcIL-34A and CcIL-34B overexpression were 40 % and 36.7 %, respectively, compared to 16.7 % in the control group. These findings suggest that CcIL-34s are involved in modulating inflammatory responses, enhancing the immune response, and improving survival rates in fish following bacterial infection, thus supporting the potential use of IL-34 molecules in aquaculture.
RESUMEN
In this research, a range of Pt/CeO2 catalysts featuring varying Pt-O-Ce bond contents were developed by modulating the oxygen vacancies of the CeO2 support for toluene abatement. The Pt/CeO2-HA catalyst generated a maximum quantity of Pt-O-Ce bonds (possessed the strongest metal-support interaction), as evidenced by the visible Raman results, which demonstrated outstanding toluene catalytic performance. Additionally, the UV Raman results revealed that the strong metal-support interaction stimulated a substantial increase in oxygen vacancies, which could facilitate the activation of gaseous oxygen to generate abundant reactive oxygen species accumulated on the Pt/CeO2-HA catalyst surface, a conclusion supported by the H2-TPR, XPS, and toluene-TPSR results. Furthermore, the results from quasi-in situ XPS, in situ DRIFTS, and DFT indicated that the Pt/CeO2-HA catalyst with a strong metal-support interaction led to improved mobility of reactive oxygen species and lower oxygen activation energies, which could transfer a large number of activated reactive oxygen species to the reaction interface to participate in the toluene oxidation, resulting in the relatively superior catalytic performance. The approach of tuning the metal-support interaction of catalysts offers a promising avenue to develop highly active catalysts for toluene degradation.
RESUMEN
This study elucidated the effect patterns of aeration and bioaugmentation on indigenous microbial communities, metabolites, and metabolic pathways in the remediation of black and odorous water. This is crucial for the precise formulation and targeted development of effective microbial consortia, as well as for tracking and forecasting the bioremediation of black and odorous water. The results confirmed that combining bioaugmentation with aeration markedly enhanced the degradation of COD, NH4+-N, and TN and the conversion of Fe and Mn. Aeration significantly increased the relative abundance of Flavobacterium and Diaphorobacter, and the positive interbacterial interaction in the effective microbial consortia EM31 gave the constituent strain Klebsiella and Bacillus a dominant niche in the bioaugmentation. Furthermore, bioaugmentation improved the capacity of the indigenous microbial consortia to utilize basic carbon source, particularly the utilization of L-glycerol, I-erythritol, glucose-1-phosphate, and the catabolism of cysteine and methionine. Moreover, during the remediation of black and odorous water by aeration and bioaugmentation, Glucosinolate biosynthesis (map00966), Steroid hormone biosynthesis (map00140), Folate biosynthesis (map00790), One carbon pool by folate (map00670), and Tyrosine metabolism (map00350) were identified as key functional metabolic pathways in microbial communities.
Asunto(s)
Microbiota , Agua , Biodegradación Ambiental , Carbono , Ácido FólicoRESUMEN
Soluble guanylate cyclase (sGC) serves as a receptor of nitric oxide (NO) and is the core metalloenzyme in the NO signal transduction pathway. sGC plays a key role in the NO-cGMP signal transduction pathway and participates in various physiological processes, including cell differentiation, neuron transmission, and internal environment homeostasis. sGC consists of two subunits, α and ß, each subunit containing multiple isoforms. In this study, we cloned and analyzed the sGC-α1 gene in the silkworm Bombyx mori (BmsGC-α1). The BmsGC-α1 gene was expressed highest at the pupal stages. The highest BmsGC-α1 mRNA expression was observed in the head of fifth instar larvae and in fat body during the wandering stage of B. mori. Furthermore, we observed that feeding fifth instar larvae with thyroid hormone and nitroglycerin induced the expression of the BmsGC-α1 gene. Injection of BmsGC-α1 siRNA into silkworms at the prepupal stage resulted in a significant decrease in BmsGC-α1 expression levels at 48 and 72 h postinjection. After silencing BmsGC-α1, both the egg-laying amount and hatching rate of silkworm eggs were significantly reduced compared to the control group. These results suggest that BmsGC-α1 plays an important role in regulating the reproductive system of silkworms. This finding enhances our understanding of the functional diversity of sGC in insects.
Asunto(s)
Bombyx , Proteínas de Insectos , Larva , Guanilil Ciclasa Soluble , Animales , Bombyx/genética , Bombyx/crecimiento & desarrollo , Bombyx/enzimología , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Oviposición/genética , Filogenia , Secuencia de Aminoácidos , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , FemeninoRESUMEN
OBJECTIVES: Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is characterized by vocalizations, jerks, and motor behaviors during REM sleep, often associated with REM-related dream content, which is considered a prodromal stage of α-synucleinopathy. The results of the Reading the Mind in the Eyes (RME) reflecting affective Theory of Mind (ToM) are inconsistent in α-synucleinopathy. The present study tried to investigate the RME in patients with iRBD. METHODS: A total of 35 patients with iRBD and 26 healthy controls were included in the study. All participants were administered the RME and the cognitive assessments according to a standard procedure. The patients with iRBD were further divided into two groups (high or low RME) according to the scores of the RME (> 21, or ≤ 20). RESULTS: The patients with iRBD had worse scores on cognitive tests compared with healthy controls involving global cognitive screening, memory, and visuospatial abilities (p < 0.05), but the scores of the RME were similar between the two groups (20.83 ± 3.38, 20.58 ± 3.43) (p Ë 0.05). Patients with low RME had more obvious cognitive impairments than healthy controls. After applying Bonferroni correction for multiple tests, the low REM group only performed worse on the Sum of trials 1 to 5 and delayed recall of the RAVLT compared with the healthy control group (p < 0.001, = 0.002). The RME correlated with the scores of cognitive tests involving executive function, attention, memory, and visuospatial function. CONCLUSIONS: The changes in RME had a relationship with cognitive impairments, especially memory, in patients with iRBD.
Asunto(s)
Trastorno de la Conducta del Sueño REM , Teoría de la Mente , Humanos , Trastorno de la Conducta del Sueño REM/fisiopatología , Trastorno de la Conducta del Sueño REM/psicología , Masculino , Femenino , Anciano , Teoría de la Mente/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiologíaRESUMEN
INTRODUCTION: An increasing number of original studies suggested that occupational noise exposure might be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. In addition, the attributable fraction (AF) of occupational noise exposure has not been well quantified. We aimed to conduct a large-scale occupational population-based study to comprehensively investigate the relationship between occupational noise exposure and blood pressure and different hypertension subtypes and to estimate the AF for hypertension burden attributable to occupational noise exposure. METHODS: A total of 715,135 workers aged 18-60 years were included in this study based on the Key Occupational Diseases Surveillance Project of Guangdong in 2020. Multiple linear regression was performed to explore the relationships of occupational noise exposure status, the combination of occupational noise exposure and binaural high frequency threshold on average (BHFTA) with systolic and diastolic blood pressure (SBP, DBP). Multivariable logistic regression was used to examine the relationshipassociation between occupational noise exposure status, occupational noise exposure combined with BHFTA and hypertension. Furthermore, the attributable risk (AR) was calculated to estimate the hypertension burden attributed to occupational exposure to noise. RESULTS: The prevalence of hypertension among occupational noise-exposed participants was 13·7%. SBP and DBP were both significantly associated with the occupational noise exposure status and classification of occupational noise exposure combined with BHFTA in the crude and adjusted models (all P < 0·0001). Compared with workers without occupational noise exposure, the risk of hypertension was 50% greater among those exposed to occupational noise in the adjusted model (95% CI 1·42-1·58). For participants of occupational noise exposed with BHFTA normal, and occupational noise exposed with BHFTA elevated, the corresponding risks of hypertension were 48% (1·41-1·56) and 56% (1·46-1·63) greater than those of occupational noise non-exposed with BHFTA normal, respectively. A similar association was found in isolated systolic hypertension (ISH) and prehypertension. Subgroup analysis by sex and age showed that the positive associations between occupational noise exposure and hypertension remained statistically significant across all subgroups (all P < 0.001). Significant interactions between occupational noise status, classification of occupational noise exposure combined with BHFTA, and age in relation to hypertension risk were identified (all P for interaction < 0.001). The associations of occupational noise status, classification of occupational noise exposure combined with BHFTA and hypertension were most pronounced in the 18-29 age groups. The AR% of occupational noise exposure for hypertension was 28·05% in the final adjusted model. CONCLUSIONS: Occupational noise exposure was positively associated with blood pressure levels and the prevalence of hypertension, ISH, and prehypertension in a large occupational population-based study. A significantly increased risk of hypertension was found even in individuals with normal BHFTA exposed to occupational noise, with a further elevated risk observed in those with elevated BHFTA. Our findings provide epidemiological evidence for key groups associated with occupational noise exposure and hypertension, and more than one-fourth of hypertension cases would have been prevented by avoiding occupational noise exposure.
Asunto(s)
Pérdida Auditiva Provocada por Ruido , Hipertensión , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Exposición Profesional , Prehipertensión , Humanos , Ruido en el Ambiente de Trabajo/efectos adversos , Estudios Transversales , Hipertensión/epidemiología , Hipertensión/etiología , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Enfermedades Profesionales/epidemiología , Pérdida Auditiva Provocada por Ruido/etiología , China/epidemiologíaRESUMEN
BACKGROUND: Gut microbes play crucial roles in the development and health of their animal hosts. However, the evolutionary relationships of gut microbes with vertebrate hosts, and the consequences that arise for the ecology and lifestyle of the microbes are still insufficiently understood. Specifically, the mechanisms by which strain-level diversity evolved, the degree by which lineages remain stably associated with hosts, and how their evolutionary history influences their ecological performance remain a critical gap in our understanding of vertebrate-microbe symbiosis. RESULTS: This study presents the characterization of an extended collection of strains of Limosilactobacillus reuteri and closely related species from a wide variety of hosts by phylogenomic and comparative genomic analyses combined with colonization experiments in mice to gain insight into the long-term evolutionary relationship of a bacterial symbiont with vertebrates. The phylogenetic analysis of L. reuteri revealed early-branching lineages that primarily consist of isolates from rodents (four lineages) and birds (one lineage), while lineages dominated by strains from herbivores, humans, pigs, and primates arose more recently and were less host specific. Strains from rodent lineages, despite their phylogenetic divergence, showed tight clustering in gene-content-based analyses. These L. reuteri strains but not those ones from non-rodent lineages efficiently colonize the forestomach epithelium of germ-free mice. The findings support a long-term evolutionary relationships of L. reuteri lineages with rodents and a stable host switch to birds. Associations of L. reuteri with other host species are likely more dynamic and transient. Interestingly, human isolates of L. reuteri cluster phylogenetically closely with strains from domesticated animals, such as chickens and herbivores, suggesting zoonotic transmissions. CONCLUSIONS: Overall, this study demonstrates that the evolutionary relationship of a vertebrate gut symbiont can be stable in particular hosts over time scales that allow major adaptations and specialization, but also emphasizes the diversity of symbiont lifestyles even within a single bacterial species. For L. reuteri, symbiont lifestyles ranged from autochthonous, likely based on vertical transmission and stably aligned to rodents and birds over evolutionary time, to allochthonous possibly reliant on zoonotic transmission in humans. Such information contributes to our ability to use these microbes in microbial-based therapeutics.
Asunto(s)
Limosilactobacillus reuteri , Humanos , Animales , Porcinos , Ratones , Filogenia , Roedores , Pollos , Evolución Biológica , VertebradosRESUMEN
OBJECTIVE: Diet-derived circulating antioxidants have been associated with functional outcome after ischemic stroke (IS), but the causality remains unclear. The aim of our study is to explore the potential causal effect of diet-derived circulating antioxidants on long-term functional outcome (at 3 months) following IS through the utilization of the Mendelian randomization (MR) approach. MATERIALS AND METHODS: For this two-sample MR analysis, genetic variants associated with the diet-derived circulating antioxidants, including selenium, zinc, vitamin A (retinol), vitamin C, and vitamin E (α-tocopherol and γ-tocopherol), were identified in a large-scale Genome-Wide Association Studies (GWAS) database and utilized as instrumental variables (IVs). Summary data for long-term functional outcome after IS were obtained from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network of 6021 patients. Our study used the Inverse-variance weighting method as our primary MR method and also performed a series of sensitivity analyses for pleiotropy and heterogeneity. RESULTS: We observed that selenium (odds ratio (OR)=0.81; 95 % confidence interval (CI): 0.68-0.97; p=0.02) was significantly associated with poor functional outcome (modified Rankin Scale score≥3) after IS. Genetic liabilities to other diet-derived circulating antioxidants were not strongly associated with functional outcome after IS (all p>0.05). Sensitivity analyses confirmed the reliability of these results. CONCLUSION: This MR study suggested the positive effect of selenium on the long-term functional outcome after IS. Giving a longer period of selenium exposure can be used as a potential treatment to improve recovery after IS.
RESUMEN
Climate change has triggered more frequent drought occurrence, which can have devastating impacts on the ecosystem functions. Studies on vegetation behavior during droughts have mainly focused on arid/semi-arid regions, yet the ecological and vegetation responses during drought in humid regions remain unclear. Here we systematically evaluated the evolution of the historic drought occurred in the humid Pearl River Basin in 2021 and quantified the vegetation responses using a multitude of vegetation indicators. Analyses showed that the East River Basin and North River Basin were the most severely hit by drought, which enhanced surface temperature and evapotranspiration, and caused soil moisture and terrestrial water storage deficits. Mean vegetation response time was shorter based on solar-induced fluorescence (SIF, 2.7 months) and the water use efficiency (WUE, 2.8 months), followed by the gross primary productivity (GPP, 3.2 months), and longer using the normalized difference vegetation index (NDVI, 4.2 months) and the vegetation optical depth (VOD, 5.0 months). By contrast, over 90% of the ecosystems recovered to their normal states within 3 months using all indicators. The results implied that the NDVI lacks sensitivity to changes in water stress in humid regions, and revealed that vegetation in humid regions may respond slowly and recover rapidly under droughts, which may relate to the water availability that enhances the resistance and resilience of the ecosystems.
RESUMEN
Precise and rapid detection of immune responses is critical for timely therapeutic regimen adjustment. Immunomodulation of tumor-associated macrophages (TAMs) from a protumorigenic phenotype (M2) to an antitumorigenic phenotype (M1) is crucial in macrophage-targeted immunotherapy. Herein, we developed a boron dipyrromethene (BODIPY)-based fluorescence probe BDP3 to detect the immune responses after immunotherapy by monitoring the nitric oxide (NO) released by M1 TAMs. With an aromatic primary monoamine structure and a p-methoxyanilin electron donor in the meso-position, BDP3 not only specifically activates stable and sensitive fluorescence by NO via a photoinduced electron transfer (PET) process but also achieves a long emission wavelength for efficient in vitro and in vivo imaging. Such NO-induced fluorescence signals of BDP3 are validated to correlate well with the phenotypes of TAMs detected in macrophage cell lines and tumor tissues. The distinct sensing effects toward two types of clinically used immunotherapeutic drugs further confirm the ability of BDP3 for specific monitoring of the M1/M2 switch in response to the macrophage-targeted immunotherapy. By virtue of good biocompatibility and appropriate tumor retention time, BDP3 could be a potential fluorescent probe for noninvasive evaluation of the immunotherapeutic efficacy of macrophage-targeted immunotherapy in living animals.
Asunto(s)
Boro , Óxido Nítrico , Animales , Óxido Nítrico/metabolismo , Boro/química , Macrófagos/metabolismo , Inmunoterapia/métodos , Colorantes Fluorescentes/química , Microambiente TumoralRESUMEN
Solar irradiance variations have a direct effect on the accuracy and repeatability of identifying spectral signatures in the remote sensing field experiments. Solar simulators have been deployed to allow for testing under controlled and reproducible laboratory conditions. However, it is difficult and expensive to make a large-area solar simulation with the appropriate spectral content and spatial uniformity of irradiance. In this study, a hybrid solar simulator has been designed and constructed to provide large-area illumination for remote sensing simulation applications. A design method based on the two-phase genetic algorithm is proposed to improve the performance of the spectral match and spatial uniformity, which no longer relies on the traditional trial-and-error technique. The first phase is used to determine the most appropriate configuration of different lamps in order to represent the solar spectrum. The second phase is to accommodate an optimal placement of the multiple sources to achieve irradiance uniformity. Both numerical simulations and experiments were performed to verify the performances. The results showed that the solar simulator provided a good spectral match and spatial irradiance for simulating the variations in direct normal irradiance at different solar zenith angles. In addition, the modular design makes it possible to adjust irradiance on the target area without altering the spectral distribution. This work demonstrates the development and measurement of a hybrid solar simulator with a realizable optimal configuration of multiple lamps, and offers the prospect of a scalable, large-area solar simulation.
RESUMEN
Self-powered solar-blind photodetectors (PDs) are promising for military and civilian applications owing to convenient operation, easy preparation, and weak-light sensitivity. In the present study, the solar-blind deep-ultraviolet (DUV) photodetector based on amorphous Ga2O3 (a-Ga2O3) and with a simple vertical stack structure is proposed by applying the low-cost magnetron sputtering technology. By tuning the thickness of the amorphous Ga2O3 layer, the device exhibits excellent detection performance. Under 3â V reverse bias, the photodetector achieves a high responsivity of 671A/W, a high detectivity of 2.21 × 1015 Jones, and a fast response time of 27/11â ms. More extraordinary, with the help of the built-in electric field at the interface, the device achieves an excellent performance in detection when self-powered, with an ultrahigh responsivity of 3.69 A/W and a fast response time of 2.6/6.6â ms under 254â nm light illumination. These results demonstrate its superior performance to most of the self-powered Schottky junction UV photodetectors reported to date. Finally, the Pt/a-Ga2O3/ITO Schottky junction photodiode detector is verified as a good performer in imaging, indicating its applicability in such fields as artificial intelligence, machine vision, and solar-blind imaging.
RESUMEN
PURPOSE: Interstitial cystitis (IC), a chronic pain syndrome characterized by urinary frequency, urgency, and bladder or pelvic floor pain, severely affects the quality of life of patients. The aim of this study was to investigate the role and mechanism of long noncoding RNA Maternally Expressed Gene3 (lncRNA MEG3) in IC. METHODS: An IC rat model was established by intraperitoneal injection of cyclophosphamide combined with bladder perfusion of fisetin and tumor necrosis factor-α (TNF-α) to mimic IC. An in vitro model was established using TNF-α-induced rat bladder epithelium cells. H&E staining was used to assess bladder tissue damage and ELISA was used to measure inflammatory cytokine levels. Western blot analysis was used to examine Nrf2, Bax, Bcl-2, cleaved caspase-3, p-p38, p38, p-NF-κB and NF-κB protein expression levels. RNA immunoprecipitation and RNA pull-down assays were used to examine the interaction between MEG3 and Nrf2. RESULTS: MEG3 levels were upregulated in IC tissues and bladder epithelial cells, whereas Nrf2 expression was found to be downregulated. Knockdown of MEG3 reduced bladder tissue injury, inflammation, oxidative stress and apoptosis. MEG3 was negatively correlated with Nrf2. Downregulation of MEG3 alleviated IC inflammation and injury by upregulating Nrf2 and inhibiting the p38/NF-κB pathway. CONCLUSION: Downregulation of MEG3 alleviated inflammation and injury in IC rats by upregulating Nrf2 and inhibiting the p38/NF-κB pathway.