Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.168
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(24): 4574-4586.e16, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423580

RESUMEN

CRISPR-Cas systems are host-encoded pathways that protect microbes from viral infection using an adaptive RNA-guided mechanism. Using genome-resolved metagenomics, we find that CRISPR systems are also encoded in diverse bacteriophages, where they occur as divergent and hypercompact anti-viral systems. Bacteriophage-encoded CRISPR systems belong to all six known CRISPR-Cas types, though some lack crucial components, suggesting alternate functional roles or host complementation. We describe multiple new Cas9-like proteins and 44 families related to type V CRISPR-Cas systems, including the Casλ RNA-guided nuclease family. Among the most divergent of the new enzymes identified, Casλ recognizes double-stranded DNA using a uniquely structured CRISPR RNA (crRNA). The Casλ-RNA-DNA structure determined by cryoelectron microscopy reveals a compact bilobed architecture capable of inducing genome editing in mammalian, Arabidopsis, and hexaploid wheat cells. These findings reveal a new source of CRISPR-Cas enzymes in phages and highlight their value as genome editors in plant and human cells.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Animales , Humanos , Microscopía por Crioelectrón , Edición Génica , Genoma , Bacteriófagos/genética , ADN , ARN , Mamíferos/genética
2.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
3.
Nat Immunol ; 21(3): 309-320, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31953534

RESUMEN

Tissue-resident memory T cells (TRM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway TRM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway TRM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce TRM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway TRM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung TRM cell populations and show that local environmental cues altered airway TRM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer TRM cells in the lung.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Epigénesis Genética/inmunología , Memoria Inmunológica/genética , Pulmón/inmunología , Animales , Apoptosis/inmunología , Linfocitos T CD8-positivos/citología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Microambiente Celular/genética , Microambiente Celular/inmunología , Femenino , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología
4.
Cell ; 169(6): 1090-1104.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552346

RESUMEN

Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Azoospermia/genética , Mutación , Animales , Azoospermia/metabolismo , Cromatina/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Histonas/metabolismo , Humanos , Intrones , Masculino , Ratones , Linaje , Protaminas/metabolismo , Proteolisis , Espermatogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación
6.
N Engl J Med ; 390(12): 1080-1091, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38507751

RESUMEN

BACKGROUND: Ribociclib has been shown to have a significant overall survival benefit in patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Whether this benefit in advanced breast cancer extends to early breast cancer is unclear. METHODS: In this international, open-label, randomized, phase 3 trial, we randomly assigned patients with HR-positive, HER2-negative early breast cancer in a 1:1 ratio to receive ribociclib (at a dose of 400 mg per day for 3 weeks, followed by 1 week off, for 3 years) plus a nonsteroidal aromatase inhibitor (NSAI; letrozole at a dose of 2.5 mg per day or anastrozole at a dose of 1 mg per day for ≥5 years) or an NSAI alone. Premenopausal women and men also received goserelin every 28 days. Eligible patients had anatomical stage II or III breast cancer. Here we report the results of a prespecified interim analysis of invasive disease-free survival, the primary end point; other efficacy and safety results are also reported. Invasive disease-free survival was evaluated with the use of the Kaplan-Meier method. The statistical comparison was made with the use of a stratified log-rank test, with a protocol-specified stopping boundary of a one-sided P-value threshold of 0.0128 for superior efficacy. RESULTS: As of the data-cutoff date for this prespecified interim analysis (January 11, 2023), a total of 426 patients had had invasive disease, recurrence, or death. A significant invasive disease-free survival benefit was seen with ribociclib plus an NSAI as compared with an NSAI alone. At 3 years, invasive disease-free survival was 90.4% with ribociclib plus an NSAI and 87.1% with an NSAI alone (hazard ratio for invasive disease, recurrence, or death, 0.75; 95% confidence interval, 0.62 to 0.91; P = 0.003). Secondary end points - distant disease-free survival and recurrence-free survival - also favored ribociclib plus an NSAI. The 3-year regimen of ribociclib at a 400-mg starting dose plus an NSAI was not associated with any new safety signals. CONCLUSIONS: Ribociclib plus an NSAI significantly improved invasive disease-free survival among patients with HR-positive, HER2-negative stage II or III early breast cancer. (Funded by Novartis; NATALEE ClinicalTrials.gov number, NCT03701334.).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Inhibidores de la Aromatasa , Neoplasias de la Mama , Letrozol , Femenino , Humanos , Aminopiridinas/administración & dosificación , Aminopiridinas/efectos adversos , Aminopiridinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Letrozol/administración & dosificación , Letrozol/efectos adversos , Letrozol/uso terapéutico , Purinas/administración & dosificación , Purinas/efectos adversos , Purinas/uso terapéutico , Receptor ErbB-2/metabolismo , Inhibidores de la Aromatasa/administración & dosificación , Inhibidores de la Aromatasa/efectos adversos , Inhibidores de la Aromatasa/uso terapéutico , Receptores de Estrógenos , Receptores de Progesterona , Goserelina/administración & dosificación , Goserelina/efectos adversos , Goserelina/uso terapéutico , Antineoplásicos Hormonales , Masculino
7.
Plant Cell ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630900

RESUMEN

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

8.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38146915

RESUMEN

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Asunto(s)
Proteínas Bacterianas , Sistemas de Lectura Abierta , Complejo de Proteína del Fotosistema I , Synechocystis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/genética , Synechocystis/genética , Synechocystis/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cloroplastos/metabolismo , Fotosíntesis/genética , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Mutación
9.
Proc Natl Acad Sci U S A ; 121(9): e2315297121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377191

RESUMEN

Considerable progress has been made in the experimental studies on laser-induced terahertz (THz) radiation in liquids. Liquid THz demonstrates many unique features different from the gas and plasma THz. For example, the liquid THz can be efficiently produced by a monochromatic laser. Its yield is maximized with a longer driving-pulse duration. It is also linearly dependent on the excitation pulse energy. In two-color laser fields, an unexpected unmodulated THz field was measured, and its energy dependence of the driving laser is completely different from that of the modulated THz waves. However, the underlying microscopic mechanism is still unclear due to the difficulties in the description of ultrafast dynamics in complex disordered liquids. Here we propose a shift-current model. The experimental observations could be reproduced by our theory successfully. In addition, our theory could be further utilized to investigate the nuclear quantum effect in the THz radiation in H2O and D2O. This work provides fundamental insights into the origin of the THz radiation in bulk liquids.

10.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959041

RESUMEN

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Asunto(s)
Potenciales de Acción , Poliestirenos , Sinapsis , Potenciales de Acción/fisiología , Sinapsis/fisiología , Poliestirenos/química , Nanotecnología/métodos , Nanotecnología/instrumentación
11.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36796361

RESUMEN

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Asunto(s)
Astenozoospermia , Tupaia , Animales , Masculino , Macaca fascicularis , Primates , Semen , Motilidad Espermática , Tupaiidae
12.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691724

RESUMEN

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Asunto(s)
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicación de Gen , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotosíntesis/genética , Evolución Molecular
13.
Cell ; 147(5): 1011-23, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118459

RESUMEN

Atypical antipsychotic drugs, such as clozapine and risperidone, have a high affinity for the serotonin 5-HT(2A) G protein-coupled receptor (GPCR), the 2AR, which signals via a G(q) heterotrimeric G protein. The closely related non-antipsychotic drugs, such as ritanserin and methysergide, also block 2AR function, but they lack comparable neuropsychological effects. Why some but not all 2AR inhibitors exhibit antipsychotic properties remains unresolved. We now show that a heteromeric complex between the 2AR and the G(i)-linked GPCR, metabotropic glutamate 2 receptor (mGluR2), integrates ligand input, modulating signaling output and behavioral changes. Serotonergic and glutamatergic drugs bind the mGluR2/2AR heterocomplex, which then balances Gi- and Gq-dependent signaling. We find that the mGluR2/2AR-mediated changes in Gi and Gq activity predict the psychoactive behavioral effects of a variety of pharmocological compounds. These observations provide mechanistic insight into antipsychotic action that may advance therapeutic strategies for disorders including schizophrenia and dementia.


Asunto(s)
Antipsicóticos/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Anfetaminas/farmacología , Animales , Clozapina/farmacología , Dimerización , Relación Dosis-Respuesta a Droga , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Metisergida/farmacología , Ratones , Oocitos , Canales de Potasio de Rectificación Interna/metabolismo , Xenopus
14.
Nature ; 583(7817): 625-630, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669713

RESUMEN

The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2-4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD-SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.


Asunto(s)
Adenina/análogos & derivados , ADN/química , ADN/metabolismo , Desarrollo Embrionario , Proteínas de Unión a la Región de Fijación a la Matriz/antagonistas & inhibidores , Adenina/metabolismo , Animales , Emparejamiento Base , Desarrollo Embrionario/genética , Eucromatina/genética , Eucromatina/metabolismo , Femenino , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Células Madre/citología , Células Madre/metabolismo , Termodinámica , Trofoblastos/citología
15.
Proc Natl Acad Sci U S A ; 120(4): e2216822120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652483

RESUMEN

Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) systems have been developed as important tools for plant genome engineering. Here, we demonstrate that the hypercompact CasΦ nuclease is able to generate stably inherited gene edits in Arabidopsis, and that CasΦ guide RNAs can be expressed with either the Pol-III U6 promoter or a Pol-II promoter together with ribozyme mediated RNA processing. Using the Arabidopsis fwa epiallele, we show that CasΦ displays higher editing efficiency when the target locus is not DNA methylated, suggesting that CasΦ is sensitive to chromatin environment. Importantly, two CasΦ protein variants, vCasΦ and nCasΦ, both showed much higher editing efficiency relative to the wild-type CasΦ enzyme. Consistently, vCasΦ and nCasΦ yielded offspring plants with inherited edits at much higher rates compared to WTCasΦ. Extensive genomic analysis of gene edited plants showed no off-target editing, suggesting that CasΦ is highly specific. The hypercompact size, T-rich minimal protospacer adjacent motif (PAM), and wide range of working temperatures make CasΦ an excellent supplement to existing plant genome editing systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Edición Génica , Arabidopsis/genética , Sistemas CRISPR-Cas , Plantas/genética , Genoma de Planta/genética , Factores de Transcripción/genética , Proteínas de Homeodominio/genética , Proteínas de Arabidopsis/genética
16.
Proc Natl Acad Sci U S A ; 120(46): e2220300120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37948584

RESUMEN

Spinal cord injury (SCI) can lead to iron overloading and subsequent neuronal ferroptosis, which hinders the recovery of locomotor function. However, it is still unclear whether the maintenance of neuronal iron homeostasis enables to revitalize intrinsic neurogenesis. Herein, we report the regulation of cellular iron homeostasis after SCI via the chelation of excess iron ions and modulation of the iron transportation pathway using polyphenol-based hydrogels for the revitalization of intrinsic neurogenesis. The reversed iron overloading can promote neural stem/progenitor cell differentiation into neurons and elicit the regenerative potential of newborn neurons, which is accompanied by improved axon reinnervation and remyelination. Notably, polyphenol-based hydrogels significantly increase the neurological motor scores from ~8 to 18 (out of 21) and restore the transmission of sensory and motor electrophysiological signals after SCI. Maintenance of iron homeostasis at the site of SCI using polyphenol-based hydrogels provides a promising paradigm to revitalize neurogenesis for the treatment of iron accumulation-related nervous system diseases.


Asunto(s)
Sobrecarga de Hierro , Traumatismos de la Médula Espinal , Humanos , Recién Nacido , Neuronas , Neurogénesis , Traumatismos de la Médula Espinal/terapia , Hidrogeles , Hierro , Polifenoles , Homeostasis , Médula Espinal
17.
Proc Natl Acad Sci U S A ; 120(22): e2212323120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216545

RESUMEN

An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, et al., Science 292, 472-475 (2001); A. Das, B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061-1081 (2008)], a given graph G(V, E) can be naturally mapped onto a many-body Hamiltonian [Formula: see text], with edges [Formula: see text] being the two-body interactions between adjacent vertices [Formula: see text]. Thus, solving the IS problem is equivalent to finding all the computational basis ground states of [Formula: see text]. Very recently, non-Abelian adiabatic mixing (NAAM) has been proposed to address this task, exploiting an emergent non-Abelian gauge symmetry of [Formula: see text] [B. Wu, H. Yu, F. Wilczek, Phys. Rev. A 101, 012318 (2020)]. Here, we solve a representative IS problem [Formula: see text] by simulating the NAAM digitally using a linear optical quantum network, consisting of three C-Phase gates, four deterministic two-qubit gate arrays (DGA), and ten single rotation gates. The maximum IS has been successfully identified with sufficient Trotterization steps and a carefully chosen evolution path. Remarkably, we find IS with a total probability of 0.875(16), among which the nontrivial ones have a considerable weight of about 31.4%. Our experiment demonstrates the potential advantage of NAAM for solving IS-equivalent problems.

18.
Am J Hum Genet ; 109(5): 783-801, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334221

RESUMEN

Integrative analysis of genome-wide association studies (GWASs) and gene expression studies in the form of a transcriptome-wide association study (TWAS) has the potential to better elucidate the molecular mechanisms underlying disease etiology. Here we present a method, METRO, that can leverage gene expression data collected from multiple genetic ancestries to enhance TWASs. METRO incorporates expression prediction models constructed in different genetic ancestries through a likelihood-based inference framework, producing calibrated p values with substantially improved TWAS power. We illustrate the benefits of METRO in both simulations and applications to seven complex traits and diseases obtained from four GWASs. These GWASs include two of primarily European ancestry (n = 188,577 and 339,226) and two of primarily African ancestry (n = 42,752 and 23,827). In the real data applications, we leverage gene expression data measured on 1,032 African Americans and 801 European Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study to identify a substantially larger number of gene-trait associations as compared to existing TWAS approaches. The benefits of METRO are most prominent in applications to GWASs of African ancestry where the sample size is much smaller than GWASs of European ancestry and where a more powerful TWAS method is crucial. Among the identified associations are high-density lipoprotein-associated genes including PLTP and PPARG that are critical for maintaining lipid homeostasis and the type II diabetes-associated gene MAPT that supports microtubule-associated protein tau as a key component underlying impaired insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Funciones de Verosimilitud , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética
19.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36445194

RESUMEN

piRNA and PIWI proteins have been confirmed for disease diagnosis and treatment as novel biomarkers due to its abnormal expression in various cancers. However, the current research is not strong enough to further clarify the functions of piRNA in cancer and its underlying mechanism. Therefore, how to provide large-scale and serious piRNA candidates for biological research has grown up to be a pressing issue. In this study, a novel computational model based on the structural perturbation method is proposed to predict potential disease-associated piRNAs, called SPRDA. Notably, SPRDA belongs to positive-unlabeled learning, which is unaffected by negative examples in contrast to previous approaches. In the 5-fold cross-validation, SPRDA shows high performance on the benchmark dataset piRDisease, with an AUC of 0.9529. Furthermore, the predictive performance of SPRDA for 10 diseases shows the robustness of the proposed method. Overall, the proposed approach can provide unique insights into the pathogenesis of the disease and will advance the field of oncology diagnosis and treatment.


Asunto(s)
Neoplasias , ARN de Interacción con Piwi , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
20.
Circ Res ; 132(2): 208-222, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656967

RESUMEN

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Ratones , Apoptosis/fisiología , Hipoxia/metabolismo , Isquemia/metabolismo , Carioferinas , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA