RESUMEN
Function as a potential cancer biomarker, DNA methylation shows great significance in cancer diagnosis, prognosis, and treatment monitoring. While the lack of an ultrasensitive, specific, and accurate method at the single-molecule level hinders the analysis of the exceedingly low levels of DNA methylation. Herein, based on the outstanding recognition and digestion ability of methylation-sensitive restriction endonuclease (MSRE), we established a single MSRE-based cascade exponential amplification method, which requires only two ingeniously designed primers and only one recognition site of MSRE for the detection of DNA methylation. Differentiated by MSRE digestion, the cleaved unmethylated DNA is too short to induce any amplification reactions, while methylated DNA remains intact to trigger cascade exponential amplification and the subsequent CRISPR/Cas12a system. By integrating the two exponential amplification reactions, as low as 1 aM methylated DNA can be accurately detected, which corresponds to 6 molecules in a 10 µL system, indicating that our method is more sensitive than single amplification-based methods with the ability to detect DNA methylation at the single-molecule level. In addition, 0.1% methylated DNA can be effectively distinguished from large amounts of unmethylated DNA. Our method is further introduced to exploit the expression difference of DNA methylation among normal cells and cancer cells. Moreover, the visual detection of DNA methylation is also realized by the full hybridization between amplification products and the crRNA of CRISPR/Cas12a. Therefore, the proposed method has great potential to be a promising and robust bisulfite-free method for the detection of DNA methylation at the single-molecule level, which is of great importance for early diagnosis of cancer.
Asunto(s)
Metilación de ADN , Enzimas de Restricción del ADN , Técnicas de Amplificación de Ácido Nucleico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enzimas de Restricción del ADN/metabolismo , Sistemas CRISPR-Cas/genética , ADN/química , ADN/genéticaRESUMEN
Asymptomatic infections of Plasmodium parasites are major obstacles to malaria control and elimination. A sensitive, specific, and user-friendly method is urgently needed for point-of-care (POC) Plasmodium diagnostics in asymptomatic malaria, especially in resource-limited settings. In this work, we present a POC method (termed Cas13a-SDT) based on the cascade sequence recognition and signal amplification of dual Cas13a trans-cleavage and strand displacement-triggered transcription (SDT). Cas13a-SDT not only achieves exceptional specificity in discriminating the target RNA from nontarget RNAs with any cross-interaction but also meets the sensitivity criterion set by the World Health Organization (WHO) for effective malaria detection. Remarkably, this novel method was successfully applied to screen malaria in asymptomatic infections from clinical samples. The proposed method provides a user-friendly and visually interpretable output mode while maintaining high accuracy and reliability comparable to RT-PCR. These excellent features demonstrate the significant potential of Cas13a-SDT for POC diagnosis of Plasmodium infections, laying a vital foundation for advancing malaria control and elimination efforts.
Asunto(s)
Sistemas CRISPR-Cas , Malaria , Sistemas de Atención de Punto , Malaria/diagnóstico , Malaria/parasitología , Humanos , Sistemas CRISPR-Cas/genética , Plasmodium/genética , Plasmodium/aislamiento & purificación , Transcripción GenéticaRESUMEN
Extracellular enzymes are not only strongly correlated with disease development but also play critical roles in modulating immune responses. Therefore, real-time monitoring of extracellular enzymatic activity can afford straightforward insights into their spatiotemporal dynamics upon drug stimulus, and provide promising tools to unravel their key roles in modulating the cell signaling. Although DNA-based sensing probes have been frequently developed for the detection of a variety of biomolecules, there still lacks a modular design strategy for amplified imaging of extracellular enzymatic activity associated with live cells. Herein, we developed an enzymatically triggerable signal amplification strategy for real-time dynamic imaging of extracellular enzyme activity through a cell membrane-confined hybrid chain reaction (HCR). We demonstrated that, by modifying the initiator DNA with enzyme-specific incision sites and cholesterol tail, extracellular enzyme-trigged HCR could be fulfilled on the surface of the cellular membrane, facilitating amplified detection of extracellular enzymatic activity. Dynamic monitoring of enzyme secretion of cancer cells upon stimulus or macrophage cells upon inflammation challenge has also been achieved. We envision that the design strategy could provide valuable information for dissecting the role of extracellular enzymes in modulating cell responses to drug treatment.
Asunto(s)
Membrana Celular , Humanos , Membrana Celular/metabolismo , Animales , Ratones , Células RAW 264.7 , ADN/metabolismo , ADN/química , Colesterol/metabolismo , Colesterol/análisis , Macrófagos/metabolismo , Macrófagos/efectos de los fármacosRESUMEN
Disease diagnostics and surveillance increasingly highlight the importance of portable, cost-effective, and sensitive point-of-care (POC) detection of nucleic acids. Here, we report a CRISPR/Cas13a-responsive and RNA-bridged DNA hydrogel capillary sensor for the direct and visual detection of specific RNA with high sensitivity. The capillary sensor was simply prepared by loading RNA-cross-linking DNA hydrogel film (â¼0.2 mm ± 0.02 mm) at the end of a capillary. When CRISPR/Cas13a specifically recognizes the target RNA, the RNA bridge in the hydrogel film is cleaved by the trans-cleavage activity of CRISPR/Cas13a, increasing the permeability of the hydrogel film. Different concentrations of target RNA activate different amounts of Cas13a, cleaving different amounts of the RNA bridge in the hydrogel and causing corresponding changes in the permeability of the hydrogel. Therefore, samples containing different amounts of the target RNA travel to different distances in the capillary. Visual reading of the distance provides quantitative detection of the RNA target without the need for any nucleic acid amplification or auxiliary equipment. The technique was successfully used for the determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in clinical nasopharyngeal (NP) swab and saliva samples. Easily quantifiable distance using a ruler eliminates the need for any optical or electrochemical detection equipment, making this assay potentially useful for POC and on-site applications.
Asunto(s)
Sistemas CRISPR-Cas , ADN , Hidrogeles , SARS-CoV-2 , Humanos , Hidrogeles/química , ADN/química , ADN/análisis , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sistemas de Atención de Punto , ARN Viral/análisis , Técnicas Biosensibles , COVID-19/diagnóstico , COVID-19/virología , ARN/análisisRESUMEN
Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects, allowing a wide range of applications. Existing NLOS systems rely on pulsed lasers and time-resolved single-photon detectors to capture the information encoded in the time of flight of scattered photons. Despite remarkable advances, the pulsed time-of-flight LIDAR approach has limited temporal resolution and struggles to detect the frequency-associated information directly. Here, we propose and demonstrate the coherent scheme-frequency-modulated continuous wave calibrated by optical frequency comb-for high-resolution NLOS imaging, velocimetry, and vibrometry. Our comb-calibrated coherent sensor presents a system temporal resolution at subpicosecond and its superior signal-to-noise ratio permits NLOS imaging of complex scenes under strong ambient light. We show the capability of NLOS localization and 3D imaging at submillimeter scale and demonstrate NLOS vibrometry sensing at an accuracy of dozen Hertz. Our approach unlocks the coherent LIDAR techniques for widespread use in imaging science and optical sensing.
RESUMEN
(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales (Physeter microcephalus). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo. Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl-ß-curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTCY167A/D373C), evaluating different promoters, knocking out GAL80, and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTCK6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.
Asunto(s)
Glucosa , Ingeniería Metabólica , Saccharomyces cerevisiae , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Escualeno/metabolismoRESUMEN
Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects from indirect light paths that scatter multiple times in the surrounding environment, which is of considerable interest in a wide range of applications. Whereas conventional imaging involves direct line-of-sight light transport to recover the visible objects, NLOS imaging aims to reconstruct the hidden objects from the indirect light paths that scatter multiple times, typically using the information encoded in the time-of-flight of scattered photons. Despite recent advances, NLOS imaging has remained at short-range realizations, limited by the heavy loss and the spatial mixing due to the multiple diffuse reflections. Here, both experimental and conceptual innovations yield hardware and software solutions to increase the standoff distance of NLOS imaging from meter to kilometer range, which is about three orders of magnitude longer than previous experiments. In hardware, we develop a high-efficiency, low-noise NLOS imaging system at near-infrared wavelength based on a dual-telescope confocal optical design. In software, we adopt a convex optimizer, equipped with a tailored spatial-temporal kernel expressed using three-dimensional matrix, to mitigate the effect of the spatial-temporal broadening over long standoffs. Together, these enable our demonstration of NLOS imaging and real-time tracking of hidden objects over a distance of 1.43 km. The results will open venues for the development of NLOS imaging techniques and relevant applications to real-world conditions.
RESUMEN
The target-dependent endonuclease activity (also known as the trans-cleavage activity) of CRISPR-Cas systems has stimulated great interest in the development of nascent sensing strategies for nucleic acid diagnostics. Despite many attempts, the majority of the sensitive CRISPR-Cas diagnostics strategies mainly rely on nucleic acid preamplification, which generally needs complex probes/primers designs, multiple experimental steps, and a longer testing time, as well as introducing the risk of false-positive results. In this work, we propose the CRISPR-Cas-Driven Single Micromotor (Cas-DSM), which can directly detect the nucleic acid targets at a single-molecule level with high specificity. We have demonstrated that the Cas-DSM is a reliable and practical method for the quantitative detection of DNA/RNA in various complex clinical samples as well as in individual cells without any preamplification processes. Due to the excellent features of the CRISPR/Cas system, including constant temperature, simple design, high specificity, and flexible programmability, the Cas-DSM could serve as a simple and universal platform for nucleic acid detection. More importantly, this work will provide a breakthrough for the development of next-generation amplification-free CRISPR/Cas sensing toolboxes.
Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , ARN , Biomarcadores , Cartilla de ADNRESUMEN
Single-photon light detection and ranging (LiDAR) has emerged as a strong candidate technology for active imaging applications. In particular, the single-photon sensitivity and picosecond timing resolution permits high-precision three-dimensional (3D) imaging capability through atmospheric obscurants including fog, haze and smoke. Here we demonstrate an array-based single-photon LiDAR system, which is capable of performing 3D imaging in atmospheric obscurant over long ranges. By adopting the optical optimization of system and the photon-efficient imaging algorithm, we acquire depth and intensity images through dense fog equivalent to 2.74 attenuation lengths at distances of 13.4 km and 20.0 km. Furthermore, we demonstrate real-time 3D imaging for moving targets at 20 frames per second in mist weather conditions over 10.5 km. The results indicate great potential for practical applications of vehicle navigation and target recognition in challenging weather.
RESUMEN
Single-photon light detection and ranging (LiDAR) has broad applications ranging from remote sensing to target recognition. In most cases, however, the repetition period of the pulsed laser limits the maximum distance that can be unambiguously determined. The relative distances are normally obtained using a depth map. Here, we propose and demonstrate a photon-efficient three-dimensional (3D) imaging framework which permits the operation of high laser pulse repetition rates for long-range depth imaging without range ambiguity. Our approach uses only one laser period per pixel and borrows the information from neighboring pixels to reconstruct the absolute depth map of the scene. We demonstrate the absolute depth map recovery at ranges between 2.2 km and 13.8 km using â¼1.41 signal photons per pixel. We also show the capability to image the absolute distances of moving targets in real time.
RESUMEN
Twin-field quantum key distribution (TF-QKD) has emerged as a promising solution for practical quantum communication over long-haul fiber. However, previous demonstrations on TF-QKD require the phase locking technique to coherently control the twin light fields, inevitably complicating the system with extra fiber channels and peripheral hardware. Here, we propose and demonstrate an approach to recover the single-photon interference pattern and realize TF-QKD without phase locking. Our approach separates the communication time into reference frames and quantum frames, where the reference frames serve as a flexible scheme for establishing the global phase reference. To do so, we develop a tailored algorithm based on fast Fourier transform to efficiently reconcile the phase reference via data postprocessing. We demonstrate no-phase-locking TF-QKD from short to long distances over standard optical fibers. At 50-km standard fiber, we produce a high secret key rate (SKR) of 1.27 Mbit/s, while at 504-km standard fiber, we obtain the repeaterlike key rate scaling with a SKR of 34 times higher than the repeaterless secret key capacity. Our work provides a scalable and practical solution to TF-QKD, thus representing an important step towards its wide applications.
Asunto(s)
Algoritmos , Comunicación , FotonesRESUMEN
Alternative messenger RNA (mRNA) splicing is a vital regulatory process during the gene expression of higher eukaryotes. The specific and sensitive quantification of disease-related mRNA splice variants in biological and clinical samples is becoming particularly important. Reverse transcription polymerase chain reaction (RT-PCR), the most classical strategy for the assay of mRNA splice variants, cannot avoid false positive signals, which poses a challenge to the specificity of mRNA splice variant detection. In this paper, by rationally designing two DNA probes with double recognition at the splice site and different lengths, different mRNA splice variants could generate amplification products of unique lengths. Combined with capillary electrophoresis (CE) separation, the product peak of the corresponding mRNA splice variant can be specifically detected, which can avoid false-positive signals caused by non-specific amplification of PCR, greatly improving the specificity of the mRNA splice variant assay. In addition, universal PCR amplification eliminates amplification bias caused by different primer sequences and improves quantitative accuracy. Furthermore, the proposed method can simultaneously detect multiple mRNA splice variants as low as 100 aM in a one-tube reaction and has been successfully applied to the assay of variants in cell samples, which will provide a new strategy for mRNA splice variant-based clinical diagnosis and research.
Asunto(s)
Empalme Alternativo , ADN , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa , Sondas de ADN/genética , Sondas de ADN/metabolismo , ADN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Specific recognition and sensitive quantification of mRNA alternative splice variants have been a necessity for exploring the regulatory mechanism of RNA splicing and revealing the association between pre-mRNA splicing and transcriptome function, as well as disease diagnosis. However, their wide abundance range and high sequence homology pose enormous challenges for high sensitivity and selectivity quantification of splice variants. Herein, taking advantage of the excellent specificity of ligation and the powerful nucleic acid replication feature of loop-mediated isothermal amplification (LAMP), we developed a one-pot method (termed one-pot ligation-LAMP) for specific recognition and sensitive quantification of mRNA splicing variants based on two splicing junction-specific stem-loop DNA probe ligation and the subsequently initiating LAMP. The one-pot ligation-LAMP can specifically detect as low as 100 aM mRNA splice variants without any nonspecific signals and quantify them with a wide dynamics range spanning at least six orders of magnitude. We have demonstrated that the one-pot ligation-LAMP is a versatile and practical strategy for accurately quantifying different splicing variants in complex biological samples with high sensitivity all in one tube within 90 min, thereby providing an attractive tool for mRNA splice variant-related studies.
Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , ARN Mensajero/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Sondas de ADN , Sensibilidad y EspecificidadRESUMEN
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD-a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.
RESUMEN
Specular Reflections often exist in the endoscopic image, which not only hurts many computer vision algorithms but also seriously interferes with the observation and judgment of the surgeon. The information behind the recovery specular reflection areas is a necessary pre-processing step in medical image analysis and application. The existing highlight detection method is usually only suitable for medium-brightness images. The existing highlight removal method is only applicable to images without large specular regions, when dealing with high-resolution medical images with complex texture information, not only does it have a poor recovery effect, but the algorithm operation efficiency is also low. To overcome these limitations, this paper proposes a specular reflection detection and removal method for endoscopic images based on brightness classification. It can effectively detect the specular regions in endoscopic images of different brightness and can improve the operating efficiency of the algorithm while restoring the texture structure information of the high-resolution image. In addition to achieving image brightness classification and enhancing the brightness component of low-brightness images, this method also includes two new steps: In the highlight detection phase, the adaptive threshold function that changes with the brightness of the image is used to detect absolute highlights. During the highlight recovery phase, the priority function of the exemplar-based image inpainting algorithm was modified to ensure reasonable and correct repairs. At the same time, local priority computing and adaptive local search strategies were used to improve algorithm efficiency and reduce error matching. The experimental results show that compared with the other state-of-the-art, our method shows better performance in terms of qualitative and quantitative evaluations, and the algorithm efficiency is greatly improved when processing high-resolution endoscopy images.
Asunto(s)
Algoritmos , Endoscopía , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Precise regulation of protein activity and localization in cancer cells is crucial to dissect the function of the protein-involved cellular network in tumorigenesis, but there is a lack of suitable methodology. Here we report the design of enzyme-operated spherical nucleic acids (E-SNAs) for manipulation of the nucleocytoplasmic translocation of proteins with cancer-cell selectivity. The E-SNAs are constructed by programmable engineering of aptamer-based modules bearing enzyme-responsive units in predesigned sites and further combination with SNA nanotechnology. We demonstrate that E-SNAs are able to regulate cytoplasmic-to-nuclear shuttling of RelA protein efficiently and specifically in tumor cells, while they remain inactive in normal cells due to insufficient enzyme expression. We further confirmed the generality of this strategy by investigating the enzyme-modulated inhibition/activation of thrombin activity by varying the aptamer-based design.
Asunto(s)
Ácidos Nucleicos , Oligonucleótidos , NanotecnologíaRESUMEN
With more and more new aptamers being reported, a general, cost-effective yet reliable aptamer binding assay is still needed. Herein, we studied cationic conjugated polymer (CCP)-based binding assays taking advantage of the conformational change of aptamer after binding with a target, which is reflected by the fluorescence change of the CCP. Poly(3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride) (PMNT) was used as a model CCP in this study, and the optimal buffer was close to physiological conditions with 100 mM NaCl and 10 mM MgCl2. We characterized four aptamers for K+, adenosine, cortisol, and caffeine. For cortisol and caffeine, the drop in the 580 nm peak intensity was used for quantification, whereas for K+ and adenosine, the fluorescence ratio at 580 over 530 nm was used. The longer stem of the stem-loop structured aptamer facilitated binding of the target and enlarged the detection signal. High specificity was achieved in differentiating targets with analogues. Compared with the SYBR Green I dye-based staining method, our method achieved equal or even higher sensitivity. Therefore, this assay is practicable as a general aptamer binding assay. The simple, label-free, quick response, and cost-effective features will make it a useful method to evaluate aptamer binding. At the same time, this system can also serve as label-free biosensors for target detection.
Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Polímeros , Cafeína , Hidrocortisona , Técnicas Biosensibles/métodos , Cationes , AdenosinaRESUMEN
Reconstituting and probing exosome-cell interactions is critical for elucidating exosome-related cell biology and advancing their diagnostic and therapeutic potential. We report here an exosomal engineering strategy to achieve controlled regulation of exosome-cell interactions with activatable sensing capability. The approach relies on membrane-protein directed, programmable DNA self-assembly to construct a DNA polymeric scaffold with multivalent display of structure-switchable aptamer sensing probes on exosome surfaces. The engineered exosomes exhibit enhanced cancer cell targeting ability compared to exosomes modified with monovalent aptamers. Furthermore, the anchored aptamer probes could be activated by specific membrane protein targeting, followed by structural switching to report an output fluorescence signal, thus allowing dynamic monitoring of exosome-cell interactions both in vitro and in vivo. We envision this will provide a complementary tool for specific regulation and monitoring of exosome-cell docking interactions and will advance the development of exosome-based biomedical applications.
Asunto(s)
Aptámeros de Nucleótidos , Exosomas , Aptámeros de Nucleótidos/química , ADN/análisis , Exosomas/química , Fluorescencia , Oligonucleótidos/análisis , Transporte de ProteínasRESUMEN
In situ sensing of physiological and pathological species in cancer cells is of great importance to unravel their molecular and cellular processes. However, the biosensing with conventional probes is often limited by the undesired on-target off-tumor interference. Here, we report a novel strategy to design enzymatically controlled nanoflares for sensing and imaging molecular targets in tumor cells. The triggerable nanoflare was designed via rational engineering of structure-switching aptamers with the incorporation of an enzyme-activatable site and further conjugation on gold nanoparticles. The nanoflare sensors did not respond to target molecules in normal cells, but they could be catalytically activated by specific enzymes in cancer cells, thereby enabling cancer-specific sensing and imaging in vitro and in vivo with improved tumor specificity. Considering that diverse aptamers were selected, we expect that this strategy would facilitate the precise detection of a broad range of targets in tumors and may promote the development of smart probes for cancer diagnosis.
Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , OroRESUMEN
Frequency-modulated continuous-wave (FMCW) light detection and ranging (LIDAR), which offers high depth resolution and immunity to environmental disturbances, has emerged as a strong candidate technology for active imaging applications. In general, hundreds of photons per pixel are required for accurate three-dimensional (3D) imaging. When it comes to the low-flux regime, however, depth estimation has limited robustness. To cope with this, we propose and demonstrate a photon-efficient approach for FMCW LIDAR. We first construct a FMCW LIDAR setup based on single-photon detectors where only a weak local oscillator is needed for the coherent detection. Further, to realize photon-efficient imaging, our approach borrows the data from neighboring pixels to enhance depth estimates, and employs a total-variation seminorm to smooth out the noise on the recovered depth map. Both simulation and experiment results show that our approach can produce high-quality 3D images from â¼10 signal photons per pixel, increasing the photon efficiency by 10-fold over the traditional processing method. The high photon efficiency will be valuable for low-power and rapid FMCW applications.