Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genet Sel Evol ; 54(1): 62, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104777

RESUMEN

BACKGROUND: The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics. RESULTS: We obtained a high-resolution phased chromosome-scale reference genome with a contig N50 of 18.03 Mb for the Luchuan pig breed (a representative eastern breed) and profiled potential selective sweeps in eastern and western pigs by resequencing the genomes of 234 pigs. Multi-tissue transcriptome and chromatin accessibility analyses of these regions suggest that tissue-specific selection pressure is mediated by promoters and distal cis-regulatory elements. Promoter variants that are associated with increased expression of the lysozyme (LYZ) gene in the small intestine might enhance the immunity of the gastrointestinal tract and roughage tolerance in pigs. In skeletal muscle, an enhancer-modulating single-nucleotide polymorphism that is associated with up-regulation of the expression of the troponin C1, slow skeletal and cardiac type (TNNC1) gene might increase the proportion of slow muscle fibers and affect meat quality. CONCLUSIONS: Our work sheds light on the molecular mechanisms by which non-coding variants shape phenotypic differences in pigs and provides valuable resources and novel perspectives to dissect the role of gene regulatory evolution in animal domestication and breeding.


Asunto(s)
Genoma , Genómica , Animales , Evolución Molecular , Fenotipo , Análisis de Secuencia de ADN , Porcinos/genética
2.
Genome Res ; 24(4): 604-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487721

RESUMEN

Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Peces Planos/genética , Procesos de Determinación del Sexo/genética , Animales , Compensación de Dosificación (Genética) , Ambiente , Femenino , Peces Planos/crecimiento & desarrollo , Masculino , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/fisiología , Testículo/crecimiento & desarrollo
3.
BMC Genomics ; 17: 447, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27286959

RESUMEN

BACKGROUND: Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. RESULTS: By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. CONCLUSIONS: Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.


Asunto(s)
Cromosomas , Evolución Molecular , Genoma , Genómica , Lagartos/genética , Animales , Pollos/genética , Mapeo Cromosómico , Femenino , Genómica/métodos , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Cromosomas Sexuales , Procesos de Determinación del Sexo/genética
4.
BMC Genomics ; 15: 1119, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25514978

RESUMEN

BACKGROUND: Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc. RESULTS: Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster's mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5'-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms. CONCLUSIONS: Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these 'relatively young' genes was critical for the origin and radiation of eukaryotes.


Asunto(s)
Crassostrea/genética , Metilación de ADN , Genoma , Invertebrados/genética , Animales , Evolución Biológica , Proteínas Potenciadoras de Unión a CCAAT/genética , Islas de CpG , Crassostrea/clasificación , ADN/química , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Unión al ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Invertebrados/clasificación , Filogenia , Análisis de Secuencia de ADN
5.
Commun Biol ; 7(1): 738, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890535

RESUMEN

Single gamete cell sequencing together with long-read sequencing can reliably produce chromosome-level phased genomes. In this study, we employed PacBio HiFi and Hi-C sequencing on a male Landrace pig, coupled with single-sperm sequencing of its 102 sperm cells. A haplotype assembly method was developed based on long-read sequencing and sperm-phased markers. The chromosome-level phased assembly showed higher phasing accuracy than methods that rely only on HiFi reads. The use of single-sperm sequencing data enabled the construction of a genetic map, successfully mapping the sperm motility trait to a specific region on chromosome 1 (105.40-110.70 Mb). Furthermore, with the assistance of Y chromosome-bearing sperm data, 26.16 Mb Y chromosome sequences were assembled. We report a reliable approach for assembling chromosome-level phased genomes and reveal the potential of sperm population in basic biology research and sperm phenotype research.


Asunto(s)
Genoma , Haplotipos , Espermatozoides , Animales , Masculino , Espermatozoides/metabolismo , Porcinos/genética , Mapeo Cromosómico/métodos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ADN/métodos , Motilidad Espermática/genética
6.
BMC Genomics ; 14: 646, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24059350

RESUMEN

BACKGROUND: In contrast to wild species, which have typically evolved phenotypes over long periods of natural selection, domesticates rapidly gained human-preferred agronomic traits in a relatively short-time frame via artificial selection. Under domesticated conditions, many traits can be observed that cannot only be due to environmental alteration. In the case of silkworms, aside from genetic divergence, whether epigenetic divergence played a role in domestication is an unanswered question. The silkworm is still an enigma in that it has two DNA methyltransferases (DNMT1 and DNMT2) but their functionality is unknown. Even in particular the functionality of the widely distributed DNMT1 remains unknown in insects in general. RESULTS: By embryonic RNA interference, we reveal that knockdown of silkworm Dnmt1 caused decreased hatchability, providing the first direct experimental evidence of functional significance of insect Dnmt1. In the light of this fact and those that DNA methylation is correlated with gene expression in silkworms and some agronomic traits in domesticated organisms are not stable, we comprehensively compare silk gland methylomes of 3 domesticated (Bombyx mori) and 4 wild (Bombyx mandarina) silkworms to identify differentially methylated genes between the two. We observed 2-fold more differentiated methylated cytosinces (mCs) in domesticated silkworms as compared to their wild counterparts, suggesting a trend of increasing DNA methylation during domestication. Further study of more domesticated and wild silkworms narrowed down the domesticates' epimutations, and we were able to identify a number of differential genes. One such gene showing demethyaltion in domesticates correspondently displays lower gene expression, and more interestingly, has experienced selective sweep. A methylation-increased gene seems to result in higher expression in domesticates and the function of its Drosophila homolog was previously found to be essential for cell volume regulation, indicating a possible correlation with the enlargement of silk glands in domesticated silkworms. CONCLUSIONS: Our results imply epigenetic influences at work during domestication, which gives insight into long time historical controversies regarding acquired inheritance.


Asunto(s)
Bombyx/genética , Metilación de ADN/genética , Epigénesis Genética , Evolución Molecular , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Técnicas de Silenciamiento del Gen , Genómica , Polimorfismo de Nucleótido Simple , Interferencia de ARN
7.
Nat Commun ; 14(1): 5194, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626056

RESUMEN

Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops.


Asunto(s)
Brassica napus , Brassica napus/genética , Fitomejoramiento , Semillas/genética , Fenotipo , Genómica , Flavonoides
8.
Hortic Res ; 92022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031802

RESUMEN

Vegetable soybean is one of the most important vegetables in China, and the demand for this vegetable has markedly increased worldwide over the past two decades. Here, we present a high-quality de novo genome assembly of the vegetable soybean cultivar Zhenong 6 (ZN6), which is one of the most popular cultivars in China. The 20 pseudochromosomes cover 94.57% of the total 1.01 Gb assembly size, with contig N50 of 3.84 Mb and scaffold N50 of 48.41 Mb. A total of 55 517 protein-coding genes were annotated. Approximately 54.85% of the assembled genome was annotated as repetitive sequences, with the most abundant long terminal repeat transposable elements. Comparative genomic and phylogenetic analyses with grain soybean Williams 82, six other Fabaceae species and Arabidopsis thaliana genomes highlight the difference of ZN6 with other species. Furthermore, we resequenced 60 vegetable soybean accessions. Alongside 103 previously resequenced wild soybean and 155 previously resequenced grain soybean accessions, we performed analyses of population structure and selective sweep of vegetable, grain, and wild soybean. They were clearly divided into three clades. We found 1112 and 1047 genes under selection in the vegetable soybean and grain soybean populations compared with the wild soybean population, respectively. Among them, we identified 134 selected genes shared between vegetable soybean and grain soybean populations. Additionally, we report four sucrose synthase genes, one sucrose-phosphate synthase gene, and four sugar transport genes as candidate genes related to important traits such as seed sweetness and seed size in vegetable soybean. This study provides essential genomic resources to promote evolutionary and functional genomics studies and genomically informed breeding for vegetable soybean.

9.
Gigascience ; 112022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36374197

RESUMEN

BACKGROUND: As a fast-growing tree species, Chosenia arbutifolia has a unique but controversial taxonomic status in the family Salicaceae. Despite its importance as an industrial material, in ecological protection, and in landscaping, C. arbutifolia is seriously endangered in Northeast China because of artificial destruction and its low reproductive capability. RESULTS: To clarify its phylogenetic relationships with other Salicaceae species, we assembled a high-quality chromosome-level genome of C. arbutifolia using PacBio High-Fidelity reads and Hi-C sequencing data, with a total size of 338.93 Mb and contig N50 of 1.68 Mb. Repetitive sequences, which accounted for 42.34% of the assembly length, were identified. In total, 33,229 protein-coding genes and 11,474 small noncoding RNAs were predicted. Phylogenetic analysis suggested that C. arbutifolia and poplars diverged approximately 15.3 million years ago, and a large interchromosomal recombination between C. arbutifolia and other Salicaceae species was discovered. CONCLUSIONS: Our study provides insights into the genome architecture and systematic evolution of C. arbutifolia, as well as comprehensive information for germplasm protection and future functional genomic studies.


Asunto(s)
Especies en Peligro de Extinción , Salicaceae , Animales , Filogenia , Genoma , Genómica
10.
iScience ; 24(11): 103359, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34805803

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2020.101422.].

11.
Mol Ecol Resour ; 21(1): 301-315, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32985096

RESUMEN

Largemouth bass (LMB; Micropterus salmoides) has been an economically important fish in North America, Europe, and China. This study obtained a chromosome-level genome assembly of LMB using PacBio and Hi-C sequencing. The final assembled genome is 964 Mb, with contig N50 and scaffold N50 values of 1.23 Mb and 36.48 Mb, respectively. Combining with RNA sequencing data, we annotated a total of 23,701 genes. Chromosomal assembly and syntenic analysis proved that, unlike most Perciformes with the popular haploid chromosome number of 24, LMB has only 23 chromosomes (Chr), among which the Chr1 seems to be resulted from a chromosomal fusion event. LMB is phylogenetically closely related to European seabass and spotted seabass, diverging 64.1 million years ago (mya) from the two seabass species. Eight gene families comprising 294 genes associated with ionic regulation were identified through positive selection, transcriptome and genome comparisons. These genes involved in iron facilitated diffusion (such as claudin, aquaporins, sodium channel protein and so on) and others related to ion active transport (such as sodium/potassium-transporting ATPase and sodium/calcium exchanger). The claudin gene family, which is critical for regulating cell tight junctions and osmotic homeostasis, showed a significant expansion in LMB with 27 family members and 68 copies for salinity adaptation. In summary, we reported the first high-quality LMB genome, and provided insights into the molecular mechanisms of LMB adaptation to fresh and brackish water. The chromosome-level LMB genome will also be a valuable genomic resource for in-depth biological and evolutionary studies, germplasm conservation and genetic breeding of LMB.


Asunto(s)
Adaptación Biológica/genética , Lubina , Animales , Lubina/genética , China , Cromosomas , Europa (Continente) , Agua Dulce , Genoma , América del Norte , Aguas Salinas
12.
Mol Ecol Resour ; 21(4): 1274-1286, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445226

RESUMEN

The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.


Asunto(s)
Ácido Clorogénico/metabolismo , Resistencia a la Enfermedad/genética , Genoma de Planta , Solanum melongena , Catecol Oxidasa/genética , Cromosomas de las Plantas , Fitomejoramiento , Solanum melongena/genética
13.
Gigascience ; 9(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32808664

RESUMEN

BACKGROUND: Dalbergia odorifera T. Chen (Fabaceae) is an International Union for Conservation of Nature red-listed tree. This tree is of high medicinal and commercial value owing to its officinal, insect-proof, durable heartwood. However, there is a lack of genome reference, which has hindered development of studies on the heartwood formation. FINDINGS: We presented the first chromosome-scale genome assembly of D. odorifera obtained on the basis of Illumina paired-end sequencing, Pacific Biosciences single-molecule real-time sequencing, 10x Genomics linked reads, and Hi-C technology. We assembled 97.68% of the 653.45 Mb D. odorifera genome with scaffold N50 and contig sizes of 56.16 and 5.92 Mb, respectively. Ten super-scaffolds corresponding to the 10 chromosomes were assembled, with the longest scaffold reaching 79.61 Mb. Repetitive elements account for 54.17% of the genome, and 30,310 protein-coding genes were predicted from the genome, of which ∼92.6% were functionally annotated. The phylogenetic tree showed that D. odorifera diverged from the ancestor of Arabidopsis thaliana and Populus trichocarpa and then separated from Glycine max and Cajanus cajan. CONCLUSIONS: We sequence and reveal the first chromosome-level de novo genome of D. odorifera. These studies provide valuable genomic resources for the research of heartwood formation in D. odorifera and other timber trees. The high-quality assembled genome can also be used as reference for comparative genomics analysis and future population genetic studies of D. odorifera.


Asunto(s)
Dalbergia , Cromosomas , Dalbergia/genética , Genoma , Anotación de Secuencia Molecular , Filogenia
14.
iScience ; 23(8): 101422, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32798971

RESUMEN

Comparative and evolutionary genomics analyses are the powerful tools to provide mechanistic insights into important agronomic traits. Here, we completed a chromosome-scale assembly of the "neglected" but vital melon subspecies Cucumis melo ssp. agrestis using single-molecule real-time sequencing, Hi-C, and an ultra-dense genetic map. Comparative genomics analyses identified two targeted genes, UDP-sugar pyrophosphorylase and α-galactosidase, that were selected during evolution for specific phloem transport of oligosaccharides in Cucurbitaceae. Association analysis of transcriptome and the DNA methylation patterns revealed the epigenetic regulation of sucrose accumulation in developing fruits. We constructed the melon recombinant inbred lines to uncover Alkaline/Neutral Invertase (CINV), Sucrose-Phosphatase 2 (SPP2), α-galactosidase, and ß-galactosidase loci related to sucrose accumulation and an LRR receptor-like serine/threonine-protein kinase associated with gummy stem blight resistance. This study provides essential genomic resources enabling functional genomics studies and the genomics-informed breeding pipelines for improving the fruit quality and disease resistance traits.

15.
Commun Biol ; 3(1): 779, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328568

RESUMEN

Wasabi, horseradish and mustard are popular pungent crops in which the characteristic bioactive hydrolysis of specialized glucosinolates (GSLs) occurs. Although the metabolic pathways of GSLs are well elucidated, how plants have evolved convergent mechanisms to accumulate identical GSL components remains largely unknown. In this study, we discovered that sinigrin is predominantly synthesized in wasabi, horseradish and mustard in Brassicaceae. We de novo assembled the transcriptomes of the three species, revealing the expression patterns of gene clusters associated with chain elongation, side chain modification and transport. Our analysis further revealed that several gene clusters were convergently selected during evolution, exhibiting convergent shifts in amino acid preferences in mustard, wasabi and horseradish. Collectively, our findings provide insights into how unrelated crop species evolve the capacity for sinigrin super-accumulation and thus promise a potent strategy for engineering metabolic pathways at multiple checkpoints to fortify bioactive compounds for condiment or pharmaceutical purposes.


Asunto(s)
Evolución Biológica , Brassicaceae/genética , Brassicaceae/metabolismo , Glucosinolatos/metabolismo , Transcriptoma , Brassicaceae/clasificación , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Especificidad de Órganos , Filogenia , Metabolismo Secundario
16.
Nat Genet ; 51(4): 739-748, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886425

RESUMEN

Allotetraploid cotton is an economically important natural-fiber-producing crop worldwide. After polyploidization, Gossypium hirsutum L. evolved to produce a higher fiber yield and to better survive harsh environments than Gossypium barbadense, which produces superior-quality fibers. The global genetic and molecular bases for these interspecies divergences were unknown. Here we report high-quality de novo-assembled genomes for these two cultivated allotetraploid species with pronounced improvement in repetitive-DNA-enriched centromeric regions. Whole-genome comparative analyses revealed that species-specific alterations in gene expression, structural variations and expanded gene families were responsible for speciation and the evolutionary history of these species. These findings help to elucidate the evolution of cotton genomes and their domestication history. The information generated not only should enable breeders to improve fiber quality and resilience to ever-changing environmental conditions but also can be translated to other crops for better understanding of their domestication history and use in improvement.


Asunto(s)
Genoma de Planta/genética , Gossypium/genética , Cromosomas de las Plantas/genética , Fibra de Algodón , Domesticación , Expresión Génica/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética
17.
Stem Cell Reports ; 9(2): 642-653, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28689997

RESUMEN

The nucleosome, the fundamental structural unit of chromatin, is a critical regulator of gene expression. The mechanisms governing changes to nucleosome occupancy and positioning during somatic cell reprogramming remain poorly understood. We established a method for generating genome-wide nucleosome maps of porcine embryonic fibroblasts (PEF), reconstructed 1-cell embryos generated by somatic cell nuclear transfer (SCNT), and fertilized zygotes (FZ) using MNase sequencing with only 1,000 cells. We found that donor PEF chromatin, especially X chromosome, became more open after transfer into porcine oocytes and nucleosome occupancy decreased in promoters but increased in the genic regions. Nucleosome arrangements around transcriptional start sites of genes with different expression levels in somatic cells tended to become transcriptionally silent in SCNT; however, some pluripotency genes adopted transcriptionally active nucleosome arrangements. FZ and SCNT had similar characteristics, unlike PEF. This study reveals the dynamics and importance of nucleosome positioning and chromatin organization early after reprogramming.


Asunto(s)
Reprogramación Celular , Técnicas de Transferencia Nuclear , Nucleosomas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Femenino , Fertilización In Vitro , Expresión Génica , Masculino , Unión Proteica , Análisis de Secuencia de ADN , Porcinos , Sitio de Iniciación de la Transcripción , Activación Transcripcional
18.
Gigascience ; 5(1): 37, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538485

RESUMEN

BACKGROUND: High-throughput sequencing (HTS) provides a powerful solution for the genome-wide identification of RNA-editing sites. However, it remains a great challenge to distinguish RNA-editing sites from genetic variants and technical artifacts caused by sequencing or read-mapping errors. RESULTS: Here we present RES-Scanner, a flexible and efficient software package that detects and annotates RNA-editing sites using matching RNA-seq and DNA-seq data from the same individuals or samples. RES-Scanner allows the use of both raw HTS reads and pre-aligned reads in BAM format as inputs. When inputs are HTS reads, RES-Scanner can invoke the BWA mapper to align reads to the reference genome automatically. To rigorously identify potential false positives resulting from genetic variants, we have equipped RES-Scanner with sophisticated statistical models to infer the reliability of homozygous genotypes called from DNA-seq data. These models are applicable to samples from either single individuals or a pool of multiple individuals if the ploidy information is known. In addition, RES-Scanner implements statistical tests to distinguish genuine RNA-editing sites from sequencing errors, and provides a series of sophisticated filtering options to remove false positives resulting from mapping errors. Finally, RES-Scanner can improve the completeness and accuracy of editing site identification when the data of multiple samples are available. CONCLUSION: RES-Scanner, as a software package written in the Perl programming language, provides a comprehensive solution that addresses read mapping, homozygous genotype calling, de novo RNA-editing site identification and annotation for any species with matching RNA-seq and DNA-seq data. The package is freely available.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Edición de ARN , Análisis de Secuencia de ARN/métodos , Biología Computacional/métodos , Anotación de Secuencia Molecular , Lenguajes de Programación , Programas Informáticos
19.
Mol Plant ; 8(6): 922-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25825286

RESUMEN

Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome sequences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16-epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe.


Asunto(s)
Dendrobium/genética , Genoma de Planta , Plantas Medicinales/genética , Secuencia de Bases , Dendrobium/clasificación , Medicina Tradicional China , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Medicinales/clasificación
20.
Gigascience ; 4: 45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26421146

RESUMEN

BACKGROUND: The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. FINDINGS: The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. CONCLUSIONS: The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Lagartos/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA