Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 258: 114931, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121080

RESUMEN

Di-(2-Ethylhexyl) phthalate (DEHP) is widely used as an additive in many plastic products. Studies have revealed that DEHP persistent exposure can affect embryonic development and lead to adverse female reproductive disorders. The establishment of pregnancy involves extensive changes in the endometrial tissue, including massive extracellular matrix (ECM) remodeling. Decidualization of the endometrium provides a suitable environment for subsequent growth by causing changes in the morphology of the uterine stromal cells, is a key process in human pregnancy. Resveratrol (RSV) is a natural polyphenolic plant antitoxin with a wide range of pharmacological effects. Growing evidence indicates that RSV has therapeutic effects on certain female reproductive disorders. In this study, the effect of DEHP on cell viability was investigated by cell proliferation assay. Cell decidualization was induced in vitro, and the downregulation of molecules associated with decidualization was confirmed through quantitative real-time PCR and western blot analysis. Immunofluorescence analysis revealed alteration in cell morphology, and found that administration of DEHP sufficiently induced ERα entry into the nucleus. The effect of DEHP on cells was fully verified by RNA-seq analysis. Interestingly, an upregulation of decidual molecules was observed after rescue with RSV, which was confirmed by RNA-seq transcriptome analysis and quantitative real-time PCR assay. Additionally, the expression of ECM remodeling-related genes was significantly restored by RSV administration. The study revealed the potential mechanisms of DEHP-induced decidualization defects and the functional relieving roles of RSV while providing a perspective therapeutic candidate for alleviating the DEHP-induced deficiencies in decidualization.


Asunto(s)
Decidua , Dietilhexil Ftalato , Embarazo , Femenino , Humanos , Resveratrol/farmacología , Dietilhexil Ftalato/metabolismo , Endometrio
2.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613747

RESUMEN

During decidualization in rodents, uterine stromal cells undergo extensive reprogramming to differentiate into distinct cell types, forming primary decidual zones (PDZs), secondary decidual zones (SDZs), and layers of undifferentiated stromal cells. The formation of secondary decidual zones is accompanied by extensive angiogenesis. During early pregnancy, besides ovarian estrogen, de novo synthesis of estrogen in the uterus is essential for the progress of decidualization. However, the molecular mechanisms are not fully understood. Studies have shown that Cystatin B (Cstb) is highly expressed in the decidual tissue of the uterus, but the regulation and mechanism of Cstb in the process of decidualization have not been reported. Our results showed that Cstb was highly expressed in mouse decidua and artificially induced deciduoma via in situ hybridization and immunofluorescence. Estrogen stimulates the expression of Cstb through the Estrogen receptor (ER)α. Moreover, in situ synthesis of estrogen in the uterus during decidualization regulates the expression of Cstb. Silencing the expression of Cstb affects the migration ability of stromal cells. Knockdown Cstb by siRNA significantly inhibits the expression of Dtprp, a marker for mouse decidualization. Our study identifies a novel estrogen target, Cstb, during decidualization and reveals that Cstb may play a pivotal role in angiogenesis during mouse decidualization via the Angptl7.


Asunto(s)
Decidua , Implantación del Embrión , Embarazo , Femenino , Ratones , Animales , Decidua/metabolismo , Implantación del Embrión/fisiología , Estrógenos/farmacología , Estrógenos/metabolismo , Útero/metabolismo , Células del Estroma/metabolismo , Proteína 7 Similar a la Angiopoyetina
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293350

RESUMEN

Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.


Asunto(s)
Actinas , Receptores de Progesterona , Embarazo , Femenino , Ratones , Animales , Actinas/metabolismo , Receptores de Progesterona/metabolismo , Progesterona/metabolismo , ARN Interferente Pequeño/metabolismo , Faloidina/metabolismo , Implantación del Embrión , Útero/metabolismo , Músculo Liso/metabolismo
4.
Ecotoxicol Environ Saf ; 207: 111511, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254391

RESUMEN

Decidualization, which endows the endometrium competency to adopt developing embryo and maintain appropriate milieu for following growth, is a pivotal process for human pregnancy. The delicate collaboration between ovarian steroid hormones estrogen and progesterone governs the process of decidualization and subsequent establishment of embryo implantation. Mycotoxin zearalenone (ZEA) is well known as endocrine disruptor due to its potent estrogenic activity. In this study, we investigated effects of ZEA on decidualization of human endometrial stromal cells. Results indicated that ZEA exhibited its inhibitory action through nuclear translocation of ERα. ZEA exposure led to dampened progress of decidualization, which could be attenuated by estrogen receptor antagonist. Notably, resveratrol (RSV) administration restored impaired decidualization process by induction of anti-oxidative gene glutathione peroxidase 3 (GPX3). This study provides novel insights into the mechanism underlying adverse effects of ZEA in human decidual stromal cells and suggests RSV a potential therapeutic candidate to alleviate ZEA-induced cytotoxicity during decidualization.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrógenos no Esteroides/toxicidad , Sustancias Protectoras/farmacología , Resveratrol/farmacología , Zearalenona/toxicidad , Células Cultivadas , Decidua/efectos de los fármacos , Implantación del Embrión/efectos de los fármacos , Endometrio/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Receptor alfa de Estrógeno , Estrógenos/farmacología , Femenino , Humanos , Embarazo , Progesterona/farmacología , Células del Estroma/efectos de los fármacos
5.
Viruses ; 16(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38932222

RESUMEN

Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.


Asunto(s)
Pollos , Infecciones por Coronavirus , Variación Genética , Genotipo , Virus de la Bronquitis Infecciosa , Filogenia , Enfermedades de las Aves de Corral , Animales , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/patogenicidad , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/aislamiento & purificación , China/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Prevalencia , Virulencia , Recombinación Genética , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA