Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401176, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529741

RESUMEN

Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.

2.
Angew Chem Int Ed Engl ; 63(14): e202319295, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335036

RESUMEN

Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.

3.
Angew Chem Int Ed Engl ; 62(50): e202314420, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37881111

RESUMEN

In this work, inspired by the principles of a pressure cooker, we utilized a high-pressure method to address the processing challenges associated with high molecular weight polymers. Through this approach, we successfully dissolved high molecular weight D18 in chloroform at 100 °C within a pressure-tight vial. The increased steam pressure raised the boiling point and dissolving capacity of chloroform, enabling the creation of a hybrid film with superior properties, including more ordered molecular arrangement, increased crystallinity, extended exciton diffusion length, and improved phase morphology. Organic solar cells (OSCs) based on D18 : L8-BO prepared using this high-pressure method achieved an outstanding power conversion efficiency of 19.65 %, setting a new record for binary devices to date. Furthermore, this high-pressure method was successfully applied to fabricate OSCs based on other common systems, leading to significant enhancements in device performance. In summary, this research introduces a universal method for processing high molecular weight D18 materials, ultimately resulting in the highest performance reported for binary organic solar cells.

4.
Angew Chem Int Ed Engl ; 62(36): e202308307, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37463122

RESUMEN

Achieving both high open-circuit voltage (Voc ) and short-circuit current density (Jsc ) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (Eloss ) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D1 AD2 (D1 =thieno[3,2-b]thiophene and D2 =selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high Voc and Jsc , due to the reduced Eloss and efficient charge transfer properties. Inspired by the high Voc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized Eloss , the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.

5.
J Chem Phys ; 157(16): 164704, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36319428

RESUMEN

Nonlinear optical limiting (OL) properties of carboxyl-functionalized Ti3C2 nanosheets (COOH-MXene) were studied using the nanosecond laser Z-scan technology. COOH-MXene showed excellent broadband OL properties with OL thresholds of 0.34 J/cm2 at 532 nm and 0.58 J/cm2 at 1064 nm, and the OL mechanism was mainly attributed to the reverse saturable absorption effect. Femtosecond time-resolved transient absorption measurements were used to clarify the ultrafast carrier dynamics in the OL process, and the results revealed that excited states absorption (ESA) in MXene was enhanced by introducing more carboxyl group terminations. When COOH-MXene was irradiated by laser pulses, excited electrons in the conduction band of MXene could transfer to the carboxyl groups and induce the ESA in the surface functional groups, resulting in the excellent OL property of COOH-MXene.

6.
J Chem Phys ; 156(5): 054702, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35135255

RESUMEN

The nonlinear optical limiting (OL) property of tin phthalocyanine porous organic frameworks (Sn-Pc-POFs) dispersion in the nanosecond regime was studied, which showed excellent dispersibility and stability as well as a low OL threshold. To clarify the nonlinear optical response mechanisms in the material, the energy level structure of Sn-Pc-POFs was simulated using the density functional theory calculation, and the photoinduced carrier dynamics was studied using femtosecond time-resolved transient absorption spectroscopy. The results indicated that the large absorption cross section and long lifetime of the excited state were responsible for the excellent OL property of the material.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38958143

RESUMEN

Great progress has been made in organic solar cells (OSCs) in recent years, especially after the report of the highly efficient small-molecule electron acceptor Y6. However, the relatively low open circuit voltage (VOC) and unbalanced charge mobilities remain two issues that need to be resolved for further improvement in the performance of OSCs. Herein, a wide-band-gap amorphous acceptor IO-4Cl, which possessed a shallower lowest unoccupied molecular orbital (LUMO) energy level than Y6, was introduced into the PM6:Y6 binary system to construct a ternary device. The mechanism study revealed that the introduced IO-4Cl was alloyed with Y6 to prevent the overaggregation of Y6 and offer dual channels for effective hole transportation, resulting in balanced hole and electron mobilities. Taking these advantages, an enhanced VOC of 0.894 V and an improved fill factor of 75.58% were achieved in the optimized PM6:Y6:IO-4Cl-based ternary device, yielding a promising power conversion efficiency (PCE) of 17.49%, which surpassed the 16.72% efficiency of the PM6:Y6 binary device. This work provides an alternative solution to balance the charge mobilities of PM6:Y6-based devices by incorporating an amorphous high-performance LUMO A-D-A small molecule as the third compound.

8.
ACS Appl Mater Interfaces ; 16(11): 14026-14037, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38447136

RESUMEN

With the rapid development of small-molecule electron acceptors, polymer electron donors are becoming more important than ever in organic photovoltaics, and there is still room for the currently available high-performance polymer donors. To further develop polymer donors with finely tunable structures to achieve better photovoltaic performances, random ternary copolymerization is a useful technique. Herein, by incorporating a new electron-withdrawing segment 2,3-bis(3-octyloxyphenyl)dithieno[3,2-f:2',3'-h]quinoxaline derivative (C12T-TQ) to PM6, a series of terpolymers were synthesized. It is worth noting that the introduction of the C12T-TQ unit can deepen the highest occupied molecular orbital energy levels of the resultant polymers. In addition, the polymer Z6 with a 10% C12T-TQ ratio possesses the highest film absorption coefficient (9.86 × 104 cm-1) among the four polymers. When blended with Y6, it exhibited superior miscibility and mutual crystallinity enhancement between Z6 and Y6, suppressed recombination, better exciton separation and charge collection characteristics, and faster hole transfer in the D-A interface. Consequently, the device of Z6:Y6 successfully achieved enhanced photovoltaic parameters and yielded an efficiency of 17.01%, higher than the 16.18% of the PM6:Y6 device, demonstrating the effectiveness of the meta-octyloxy-phenyl-modified dithieno[3,2-f:2',3'-h]quinoxaline moiety to build promising terpolymer donors for high-performance organic solar cells.

9.
Adv Sci (Weinh) ; : e2403334, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884140

RESUMEN

Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.

10.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296890

RESUMEN

The acceptor-donor-acceptor (A-D-A) type conjugated organic molecule has been widely applied in the organic optoelectronics field. A total of Nine compounds (1-9) were designed under the A-D-A framework, with the electron donor benzodithiophene as the core and dicyanomethylene as the acceptor moiety, modifying the benzodithiophene with the phenyl, naphthyl, and difluorinated phenyl groups. The conjugation length can be changed by introducing a thiophene π-conjugated bridge. The geometric structures, electronic structure, excited state properties, aromaticity, and the static- and frequency-dependent second hyperpolarizabilities were investigated by employing high-precision density functional theory (DFT) calculations with an aug-cc-pVDZ basis set. As a result, the three compounds with the longest conjugation length exhibit a smaller energy gap (Egap), larger UV-vis absorption coefficient, and response range, which are the three strongest third-order nonlinear optical (NLO) response properties in this work. This work systematically explored the connection between molecular structure and NLO response, which provides a rational design strategy for high-performance organic NLO materials.

11.
ACS Appl Mater Interfaces ; 14(7): 9386-9397, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35148049

RESUMEN

A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).

12.
ACS Appl Mater Interfaces ; 14(5): 6945-6957, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35081710

RESUMEN

Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.

13.
Materials (Basel) ; 14(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34772245

RESUMEN

Asymmetric molecule strategy is considered an effective method to achieve high power conversion efficiency (PCE) of polymer solar cells (PSCs). In this paper, nine oligomers are designed by combining three new electron-deficient units (unitA)-n1, n2, and n3-and three electron-donating units (unitD)-D, E, and F-with their π-conjugation area extended. The relationships between symmetric/asymmetric molecule structure and the performance of the oligomers are investigated using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. The results indicate that asymmetry molecule PEn2 has the minimum dihedral angle in the angle between two planes of unitD and unitA among all the molecules, which exhibited the advantages of asymmetric structures in molecular stacking. The relationship of the values of ionization potentials (IP) and electron affinities (EA) along with the unitD/unitA π-extend are revealed. The calculated reorganization energy results also demonstrate that the asymmetric molecules PDn2 and PEn2 could better charge the extraction of the PSCs than other molecules for their lower reorganization energy of 0.180 eV and 0.181 eV, respectively.

14.
Polymers (Basel) ; 12(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106540

RESUMEN

Two two-dimensional (2D) donor-acceptor (D-A) type conjugated polymers (CPs), namely, PBDT-TVT-BT and PBDT-TVT-FBT, in which two ((E)-(4,5-didecylthien-2-yl)vinyl)- 5-thien-2-yl (TVT) side chains were introduced into 4,8-position of benzo[1,2-b:4,5-b']dithiophene (BDT) to synthesize the highly conjugated electron-donating building block BDT-TVT, and benzothiadiazole (BT) and/or 5,6-difluoro-BT as electron-accepting unit, were designed to systematically ascertain the impact of fluorination on thermal stability, optoelectronic property, and photovoltaic performance. Both resultant copolymers exhibited the lower bandgap (1.60 ~ 1.69 eV) and deeper highest occupied molecular orbital energy level (EHOMO, -5.17 ~ -5.37 eV). It was found that the narrowed absorption, deepened EHOMO and weakened aggregation in solid film but had insignificant influence on thermal stability after fluorination in PBDT-TVT-FBT. Accordingly, a PBDT-TVT-FBT-based device yielded 16% increased power conversion efficiency (PCE) from 4.50% to 5.22%, benefited from synergistically elevated VOC, JSC, and FF, which was mainly originated from deepened EHOMO, increased µh, µe, and more balanced µh/µe ratio, higher exciton dissociation probability and improved microstructural morphology of the photoactive layer as a result of incorporating fluorine into the polymer backbone.

15.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046028

RESUMEN

Two random conjugated polymers (CPs), namely, PIDTT-TBT and PIDTT-TFBT, in which indacenodithieno[3,2-b]thiophene (IDTT), 3-octylthiophene, and benzothiadiazole (BT) were in turn utilized as electron-donor (D), π-bridge, and electron-acceptor (A) units, were synthesized to comprehensively analyze the impact of reducing thiophene π-bridge and further fluorination on photostability and photovoltaic performance. Meanwhile, the control polymer PIDTT-DTBT with alternating structure was also prepared for comparison. The broadened and enhanced absorption, down-shifted highest occupied molecular orbital energy level (EHOMO), more planar molecular geometry thus enhanced the aggregation in the film state, but insignificant impact on aggregation in solution and photostability were found after both reducing thiophene π-bridge in PIDTT-TBT and further fluorination in PIDTT-TFBT. Consequently, PIDTT-TBT-based device showed 185% increased PCE of 5.84% profited by synergistically elevated VOC, JSC, and FF than those of its counterpart PIDTT-DTBT, and this improvement was chiefly ascribed to the improved absorption, deepened EHOMO, raised µh and more balanced µh/µe, and optimized morphology of photoactive layer. However, the dropped PCE was observed after further fluorination in PIDTT-TFBT, which was mainly restricted by undesired morphology for photoactive layer as a result of strong aggregation even if in the condition of the upshifted VOC. Our preliminary results can demonstrate that modulating the π-bridge in polymer backbone was an effective method with the aim to enhance the performance for solar cell.

16.
ACS Appl Mater Interfaces ; 12(44): 49849-49856, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33103902

RESUMEN

The fluorination/sulfofication-induced effect in the photovoltaic polymer solar cells (PSCs) needs to be paid much attention. In this work, a new donor polymer PBDB-PS2F was synthesized by heavily fluorinated and decorated S atom on the side chain of benzo[1,2-b:4,5-b']dithiophene (BDT) unit to explore the internal combined effect of F&S on the photoelectric performance. It was found that the heavy fluorination on the side chain could make PBDB-PS2F achieve a low highest occupied molecule orbital (HOMO) energy level of -5.72 eV and weaken the torsion of the main chain and effectively increase the intermolecular π-π* transition. Encouragingly, compared with the counterpart polymer PBDB-PS without the fluorination, PBDB-PS2F exhibited a much intense aggregation at room temperature but showed a tendency of reduced aggregation at high temperatures. This feature gives excellent solution processability and uniform morphology in the active layer of a PBDB-PS2F-based device, enabling an outstanding photovoltaic performance with the power conversion efficiency (PCE) of 13.56% (VOC = 0.90 V, JSC = 21.53 mA/cm2, FF = 69.68%). Compared with that of the counterpart polymer PBDB-PS with no heavy fluorination, the VOC of PBDB-PS2F increased by 15.4% and the PCE increased by 30.9%. Thus, the heavy-fluorination-induced effect to construct photovoltaic polymers could be used to improve the performance of polymer solar cells.

17.
ACS Appl Mater Interfaces ; 12(7): 8475-8484, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31965782

RESUMEN

Ternary copolymerization strategy is considered an effective method to achieve high-performance photovoltaic conjugated polymers. Herein, a donor-acceptor1-donor-acceptor2-type random copolymer, named PBDTNS-TZ-BDD (T1), containing one electron-rich unit alkylthionaphthyl-flanked benzo[1,2-b/4,5-b'] di-thiophene (BDTNS) as D and two electron-deficient moieties benzo[1,2-c/4,5-c']dithiophene-4,8-dione (BDD) and fluorinated benzotriazole as A, was synthesized to investigate the excitonic dynamic effect. Also, the D-A-type alternating copolymer PBDTNS-BDD (P1) was also prepared for a clear comparison. Although the UV-Vis spectra and energy levels of P1 and T1 are similar, the power conversion efficiencies (PCEs) of the related devices are 11.50% (T1/ITIC) and 8.89% (P1/ITIC), respectively. The reason for this is systematically investigated and analyzed by theoretical calculation, photoluminescence, and pump-probe transient absorption spectroscopy. The density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculation results show that the terpolymer T1 with a lower exciton binding energy and a longer lifetime of spontaneous luminescence can synergistically increase the number of excitons reaching the donor/acceptor interface. The results of the pump-probe transient absorption spectroscopy show that the yield of charge separation of T1/ITIC is higher than that of the P1/ITIC blend film, and improved PCE could be achieved via copolymerization strategies. Moreover, the fabrication of the T1-based device is also simple without any additive or postprocessing. Therefore, it provides a promising and innovative method to design high-performance terpolymer materials.

18.
Polymers (Basel) ; 11(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500164

RESUMEN

A novel (E)-5-(2-(5-alkylthiothiophen-2-yl)vinyl)thien-2-yl (TVT)-comprising benzo[1,2-b:4,5-b']dithiophene (BDT) derivative (BDT-TVT) was designed and synthetized to compose two donor-acceptor (D-A) typed copolymers (PBDT-TVT-ID and PBDT-TVT-DTNT) with the electron-withdrawing unit isoindigo (ID) and naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NT), respectively. PBDT-TVT-ID and PBDT-TVT-DTNT showed good thermal stability (360 °C), an absorption spectrum from 300 nm to 760 nm and a relatively low lying energy level of Highest Occupied Molecular Orbital (EHOMO) (-5.36 to -5.45 eV), which could obtain a large open-circuit voltage (Voc) from photovoltaic devices with PBDT-TVT-ID or PBDT-TVT-DTNT. The photovoltaic devices with ITO/PFN/polymers: PC71BM/MoO3/Ag structure were assembled and exhibited a good photovoltaic performance with a power conversion efficiency (PCE) of 4.09% (PBDT-TVT-ID) and 5.44% (PBDT-TVT-DTNT), respectively. The best PCE of a PBDT-TVT-DTNT/PC71BM-based device mainly originated from its wider absorption, higher hole mobility and favorable photoactive layer morphology.

19.
ACS Appl Mater Interfaces ; 11(7): 7022-7029, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30688062

RESUMEN

To understand the vertical phase separation in the bulk junction active layer of organic photovoltaic devices is essential for controlling the charge transfer behavior and achieving effective charge collection. Here, diphenyl sulfide (DPS) was introduced as a novel additive into the PTB7-Th:PC71BM-based inverted polymer solar cells (PSCs), and the effect of additives on active blend films and photovoltaic characteristics was carefully studied. The results show that DPS could not only modulate the vertical composition distribution but also promote the ordered molecular packing of the photoactive layer, thus effectively improving exciton dissociation, charge transport, and collection, and thus exhibit an excellent power conversion efficiency of 9.7% with an improved fill factor (>70%) after using 3% DPS additive. The results show that the DPS solvent additive can effectively adjust the vertical phase distribution and crystallinity of blend films and improve the photovoltaic performance of the inverted organic photovoltaic devices.

20.
Polymers (Basel) ; 10(7)2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30960628

RESUMEN

In recent years, ternary organic photovoltaic cells (OPVs) have been dedicated to improving power conversion efficiency (PCE) by broadening optical absorption spectra. Ternary OPVs with different poly[thieno[3,2-b]thiophene-2,5-diyl-alt-4,9-bis(4-(2-decyltetradecyl)thien-2-yl)naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-5,5'-diyl] (PTT-DTNT-DT) doping concentrations were designed and the effect of PTT-DTNT-DT as a complementary electron donor on the performance of OPVs was investigated. The optimized PCE of OPVs was increased from 3.42% to 4.66% by doping 20 wt % PTT-DTNT-DT. The remarkable improvement in the performance of the ternary device is mainly attributed to the sharp increase in the short-circuit current density and fill-factor. The major reasons have been systematically studied from atomic force microscopy, electrochemical impedance spectroscopy, surface energy, space charge limited current and photocurrent behavior. It has been found that the separation of excitons and the transportation of charge are enhanced while light absorption is increased, and the charge recombination also decreases due to the optimization of the cascade energy level and the morphology of the ternary active layer. The results show that it is feasible to improve the performance of ternary OPVs by their complementary absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA