Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(4): 933-946.e14, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32780992

RESUMEN

Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.


Asunto(s)
Escherichia coli/metabolismo , Ingeniería Metabólica , Metanol/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico/genética , Variaciones en el Número de Copia de ADN , Evolución Molecular Dirigida , Escherichia coli/genética , Formaldehído/metabolismo , Glucólisis , Mutagénesis , Ribosamonofosfatos/metabolismo
2.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222573

RESUMEN

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Productos Agrícolas , Carbono , Sequías
3.
Proc Natl Acad Sci U S A ; 120(52): e2315515120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117855

RESUMEN

Hair cells are the principal sensory receptors of the vertebrate auditory system, where they transduce sounds through mechanically gated ion channels that permit cations to flow from the surrounding endolymph into the cells. The lateral line of zebrafish has served as a key model system for understanding hair cell physiology and development, often with the belief that these hair cells employ a similar transduction mechanism. In this study, we demonstrate that these hair cells are exposed to an unregulated external environment with cation concentrations that are too low to support transduction. Our results indicate that hair cell excitation is instead mediated by a substantially different mechanism involving the outward flow of anions. Further investigation of hair cell transduction in a diversity of sensory systems and species will likely yield deep insights into the physiology of these unique cells.


Asunto(s)
Sistema de la Línea Lateral , Pez Cebra , Animales , Pez Cebra/fisiología , Sistema de la Línea Lateral/fisiología , Células Ciliadas Auditivas/fisiología , Células Receptoras Sensoriales , Endolinfa
4.
Proc Biol Sci ; 291(2031): 20241463, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39317312

RESUMEN

Predator-prey interactions are fundamental to ecological and evolutionary dynamics. Yet, predicting the outcome of such interactions-whether predators intercept prey or fail to do so-remains a challenge. An emerging hypothesis holds that interception trajectories of diverse predator species can be described by simple feedback control laws that map sensory inputs to motor outputs. This form of feedback control is widely used in engineered systems but suffers from degraded performance in the presence of processing delays such as those found in biological brains. We tested whether delay-uncompensated feedback control could explain predator pursuit manoeuvres using a novel experimental system to present hunting fish with virtual targets that manoeuvred in ways that push the limits of this type of control. We found that predator behaviour cannot be explained by delay-uncompensated feedback control, but is instead consistent with a pursuit algorithm that combines short-term forecasting of self-motion and prey motion with feedback control. This model predicts both predator interception trajectories and whether predators capture or fail to capture prey on a trial-by-trial basis. Our results demonstrate how animals can combine short-term forecasting with feedback control to generate robust flexible behaviours in the face of significant processing delays.


Asunto(s)
Conducta Predatoria , Animales , Peces/fisiología , Modelos Biológicos , Cadena Alimentaria , Retroalimentación
5.
PLoS Biol ; 19(10): e3001420, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634044

RESUMEN

Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal's awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes' undulatory body motions induce reafferent feedback that can encode the body's instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors' preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.


Asunto(s)
Retroalimentación Sensorial/fisiología , Sistema de la Línea Lateral/fisiología , Propiocepción/fisiología , Potenciales de Acción/fisiología , Adaptación Fisiológica , Animales , Fenómenos Biomecánicos , Modelos Biológicos , Natación/fisiología , Factores de Tiempo , Pez Cebra/fisiología
6.
J Exp Biol ; 227(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38390692

RESUMEN

Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems.


Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/fisiología , Natación/fisiología , Aletas de Animales , Fenómenos Biomecánicos , Músculo Esquelético
7.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022908

RESUMEN

Complex hydrodynamics abound in natural streams, yet the selective pressures these impose upon different size classes of fish are not well understood. Attached vortices are produced by relatively large objects that block freestream flow, which fish routinely utilize for flow refuging. To test how flow refuging and the potential harvesting of energy (as seen in Kármán gaiting) vary across size classes in rainbow trout (Oncorhynchus mykiss; fingerling, 8 cm; parr, 14 cm; adult, 22 cm; n=4 per size class), we used a water flume (4100 l; freestream flow at 65 cm s-1) and created vortices using 45 deg wing dams of varying size (small, 15 cm; medium, 31 cm; large, 48 cm). We monitored microhabitat selection and swimming kinematics of individual trout and measured the flow field in the wake of wing dams using time-resolved particle image velocimetry (PIV). Trout of each size class preferentially swam in vortices rather than the freestream, but the capacity to flow refuge varied according to the ratio of vortex width to fish length (WV:LF). Consistent refuging behavior was exhibited when WV:LF≥1.5. All size classes exhibited increased wavelength and Strouhal number and decreased tailbeat frequency within vortices compared with freestream, suggesting that swimming in vortices requires less power output. In 17% of the trials, fish preferentially swam in a manner that suggests energy harvesting from the shear layer. Our results can inform efforts toward riparian restoration and fishway design to improve salmonid conservation.


Asunto(s)
Tamaño Corporal , Oncorhynchus mykiss , Natación , Animales , Oncorhynchus mykiss/fisiología , Natación/fisiología , Fenómenos Biomecánicos , Hidrodinámica , Reología , Movimientos del Agua , Ríos , Ecosistema
8.
J Exp Biol ; 227(4)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372042

RESUMEN

Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.


Asunto(s)
Conducta Animal , Animales , Conducta Animal/fisiología
9.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34853171

RESUMEN

Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.


Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Natación/fisiología , Aletas de Animales/anatomía & histología , Animales , Biodiversidad , Fenómenos Biomecánicos/fisiología , Conducta Cooperativa , Peces/clasificación , Hidrodinámica , Locomoción/fisiología , Especificidad de la Especie
10.
Proc Natl Acad Sci U S A ; 117(48): 30679-30686, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184173

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID 19, continues to evolve since its first emergence in December 2019. Using the complete sequences of 1,932 SARS-CoV-2 genomes, various clustering analyses consistently identified six types of the strains. Independent of the dendrogram construction, 13 signature variations in the form of single nucleotide variations (SNVs) in protein coding regions and one SNV in the 5' untranslated region (UTR) were identified and provided a direct interpretation for the six types (types I to VI). The six types of the strains and their underlying signature SNVs were validated in two subsequent analyses of 6,228 and 38,248 SARS-CoV-2 genomes which became available later. To date, type VI, characterized by the four signature SNVs C241T (5'UTR), C3037T (nsp3 F924F), C14408T (nsp12 P4715L), and A23403G (Spike D614G), with strong allelic associations, has become the dominant type. Since C241T is in the 5' UTR with uncertain significance and the characteristics can be captured by the other three strongly associated SNVs, we focus on the other three. The increasing frequency of the type VI haplotype 3037T-14408T-23403G in the majority of the submitted samples in various countries suggests a possible fitness gain conferred by the type VI signature SNVs. The fact that strains missing one or two of these signature SNVs fail to persist implies possible interactions among these SNVs. Later SNVs such as G28881A, G28882A, and G28883C have emerged with strong allelic associations, forming new subtypes. This study suggests that SNVs may become an important consideration in SARS-CoV-2 classification and surveillance.


Asunto(s)
Alelos , Genoma Viral , Genómica , SARS-CoV-2/genética , Geografía , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Tiempo
11.
Metab Eng ; 65: 255-262, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33326847

RESUMEN

Primary metabolism in cyanobacteria is built on the Calvin-Benson-Bassham (CBB) cycle, oxidative pentose phosphate (OPP) pathway, Embden-Meyerhof-Parnas (EMP) pathway, and the tricarboxylic acid (TCA) cycle. Phosphoketolase (Xpk), commonly found in cyanobacteria, is an enzyme that is linked to all these pathways. However, little is known about its physiological role. Here, we show that most of the cyanobacterial Xpk surveyed are inhibited by ATP, and both copies of Xpk in nitrogen-fixing Cyanothece ATCC51142 are further activated by ADP, suggesting their role in energy regulation. Moreover, Xpk in Synechococcus elongatus PCC7942 and Cyanothece ATCC51142 show that their expressions are dusk-peaked, suggesting their roles in dark conditions. Finally, we find that Xpk in S. elongatus PCC7942 is responsible for survival using ATP produced from the glycogen-to-acetate pathway under dark, anaerobic condition. Interestingly, under this condition, xpk deletion causes glucose secretion in response to osmotic shock such as NaHCO3, KHCO3 and NaCl as part of incomplete glycogen degradation. These findings unveiled the role of this widespread enzyme and open the possibility for enhanced glucose secretion from cyanobacteria.


Asunto(s)
Aldehído-Liasas , Glucosa , Synechococcus , Anaerobiosis , Presión Osmótica
12.
J Biomed Sci ; 28(1): 43, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098950

RESUMEN

BACKGROUND: Coronavirus disease 19 (COVID-19) first appeared in the city of Wuhan, in the Hubei province of China. Since its emergence, the COVID-19-causing virus, SARS-CoV-2, has been rapidly transmitted around the globe, overwhelming the medical care systems in many countries and leading to more than 3.3 million deaths. Identification of immunological epitopes on the virus would be highly useful for the development of diagnostic tools and vaccines that will be critical to limiting further spread of COVID-19. METHODS: To find disease-specific B-cell epitopes that correspond to or mimic natural epitopes, we used phage display technology to determine the targets of specific antibodies present in the sera of immune-responsive COVID-19 patients. Enzyme-linked immunosorbent assays were further applied to assess competitive antibody binding and serological detection. VaxiJen, BepiPred-2.0 and DiscoTope 2.0 were utilized for B-cell epitope prediction. PyMOL was used for protein structural analysis. RESULTS: 36 enriched peptides were identified by biopanning with antibodies from two COVID-19 patients; the peptides 4 motifs with consensus residues corresponding to two potential B-cell epitopes on SARS-CoV-2 viral proteins. The putative epitopes and hit peptides were then synthesized for validation by competitive antibody binding and serological detection. CONCLUSIONS: The identified B-cell epitopes on SARS-CoV-2 may aid investigations into COVID-19 pathogenesis and facilitate the development of epitope-based serological diagnostics and vaccines.


Asunto(s)
COVID-19 , Epítopos de Linfocito B , Biblioteca de Péptidos , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/inmunología , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
13.
Proc Natl Acad Sci U S A ; 115(14): 3538-3546, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555759

RESUMEN

The Embden-Meyerhoff-Parnas (EMP) pathway, commonly known as glycolysis, represents the fundamental biochemical infrastructure for sugar catabolism in almost all organisms, as it provides key components for biosynthesis, energy metabolism, and global regulation. EMP-based metabolism synthesizes three-carbon (C3) metabolites before two-carbon (C2) metabolites and must emit one CO2 in the synthesis of the C2 building block, acetyl-CoA, a precursor for many industrially important products. Using rational design, genome editing, and evolution, here we replaced the native glycolytic pathways in Escherichia coli with the previously designed nonoxidative glycolysis (NOG), which bypasses initial C3 formation and directly generates stoichiometric amounts of C2 metabolites. The resulting strain, which contains 11 gene overexpressions, 10 gene deletions by design, and more than 50 genomic mutations (including 3 global regulators) through evolution, grows aerobically in glucose minimal medium but can ferment anaerobically to products with nearly complete carbon conservation. We confirmed that the strain metabolizes glucose through NOG by 13C tracer experiments. This redesigned E. coli strain represents a different approach for carbon catabolism and may serve as a useful platform for bioproduction.


Asunto(s)
Acetilcoenzima A/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Glucosa/metabolismo , Glucólisis , Ingeniería Metabólica , Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Escherichia coli/clasificación , Escherichia coli/genética , Fermentación , Mutación
14.
Nat Chem Biol ; 14(11): 1005-1009, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30327558

RESUMEN

Escherichia coli can derive all essential metabolites and cofactors through a highly evolved metabolic system. Damage of pathways may affect cell growth and physiology, but the strategies by which damaged metabolic pathways can be circumvented remain intriguing. Here, we use a ΔpanD (encoding for aspartate 1-decarboxylase) strain of E. coli that is unable to produce the ß-alanine required for CoA biosynthesis to demonstrate that metabolic systems can overcome pathway damage by extensively rerouting metabolic pathways and modifying existing enzymes for unnatural functions. Using directed cell evolution, rewiring and repurposing of uracil metabolism allowed formation of an alternative ß-alanine biosynthetic pathway. After this pathway was deleted, a second was evolved that used a gain-of-function mutation on ornithine decarboxylase (SpeC) to alter reaction and substrate specificity toward an oxidative decarboxylation-deamination reaction. After deletion of both pathways, yet another independent pathway emerged using polyamine biosynthesis, demonstrating the vast capacity of metabolic repair.


Asunto(s)
Carboxiliasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutamato Descarboxilasa/metabolismo , Ornitina Descarboxilasa/metabolismo , Poliaminas/química , Vías Biosintéticas , Carboxiliasas/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glutamato Descarboxilasa/genética , Malondialdehído/análogos & derivados , Malondialdehído/química , Mutación , Ornitina Descarboxilasa/genética , Fenotipo , Mutación Puntual , Espectrofotometría , Especificidad por Sustrato , Uracilo/química , beta-Alanina/química
15.
J Exp Biol ; 223(Pt 12)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591340

RESUMEN

To forage in fast, turbulent flow environments where prey is abundant, fishes must deal with the high associated costs of locomotion. Prevailing theory suggests that many species exploit hydrodynamic refuges to minimize the cost of locomotion while foraging. Here, we challenge this theory based on direct oxygen consumption measurements of drift-feeding trout (Oncorhynchus mykiss) foraging in the freestream and from behind a flow refuge at velocities up to 100 cm s-1 We demonstrate that refuging is not energetically beneficial when foraging in fast flows because of a high attack cost and low prey capture success associated with leaving a station-holding refuge to intercept prey. By integrating optimum foraging theory with empirical data from respirometry and video tracking, we developed a mathematical model to predict when drift-feeding fishes should exploit or avoid refuges based on prey density, size and flow velocity. Our optimum foraging and refuging model provides new mechanistic insights into locomotor costs, habitat use and prey choice of fish foraging in current-swept habitats.


Asunto(s)
Oncorhynchus mykiss , Animales , Hidrodinámica , Locomoción , Consumo de Oxígeno , Conducta Predatoria , Natación
16.
Proc Natl Acad Sci U S A ; 114(52): 13828-13833, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229818

RESUMEN

Swimming animals need to generate propulsive force to overcome drag, regardless of whether they swim steadily or accelerate forward. While locomotion strategies for steady swimming are well characterized, far less is known about acceleration. Animals exhibit many different ways to swim steadily, but we show here that this behavioral diversity collapses into a single swimming pattern during acceleration regardless of the body size, morphology, and ecology of the animal. We draw on the fields of biomechanics, fluid dynamics, and robotics to demonstrate that there is a fundamental difference between steady swimming and forward acceleration. We provide empirical evidence that the tail of accelerating fishes can increase propulsive efficiency by enhancing thrust through the alteration of vortex ring geometry. Our study provides insight into how propulsion can be altered without increasing vortex ring size and represents a fundamental departure from our current understanding of the hydrodynamic mechanisms of acceleration. Our findings reveal a unifying hydrodynamic principle that is likely conserved in all aquatic, undulatory vertebrates.


Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Modelos Biológicos , Natación/fisiología , Animales
17.
J Neurophysiol ; 122(6): 2438-2448, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642405

RESUMEN

Accurate sensory processing during movement requires the animal to distinguish between external (exafferent) and self-generated (reafferent) stimuli to maintain sensitivity to biologically relevant cues. The lateral line system in fishes is a mechanosensory organ that experiences reafferent sensory feedback, via detection of fluid motion relative to the body generated during behaviors such as swimming. For the first time in larval zebrafish (Danio rerio), we employed simultaneous recordings of lateral line and motor activity to reveal the activity of afferent neurons arising from endogenous feedback from hindbrain efferent neurons during locomotion. Frequency of spontaneous spiking in posterior lateral line afferent neurons decreased during motor activity and was absent for more than half of swimming trials. Targeted photoablation of efferent neurons abolished the afferent inhibition that was correlated to swimming, indicating that inhibitory efferent neurons are necessary for modulating lateral line sensitivity during locomotion. We monitored calcium activity with Tg(elav13:GCaMP6s) fish and found synchronous activity between putative cholinergic efferent neurons and motor neurons. We examined correlates of motor activity to determine which may best predict the attenuation of afferent activity and therefore what components of the motor signal are translated through the corollary discharge. Swim duration was most strongly correlated to the change in afferent spike frequency. Attenuated spike frequency persisted past the end of the fictive swim bout, suggesting that corollary discharge also affects the glide phase of burst and glide locomotion. The duration of the glide in which spike frequency was attenuated increased with swim duration but decreased with motor frequency. Our results detail a neuromodulatory mechanism in larval zebrafish that adaptively filters self-generated flow stimuli during both the active and passive phases of locomotion.NEW & NOTEWORTHY For the first time in vivo, we quantify the endogenous effect of efferent activity on afferent gain control in a vertebrate hair cell system during and after locomotion. We believe that this pervasive effect has been underestimated when afferent activity of octavolateralis systems is characterized in the current literature. We further identify a refractory period out of phase with efferent control and place this gain mechanism in the context of gliding behavior of freely moving animals.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Sistema de la Línea Lateral/fisiología , Locomoción/fisiología , Neuronas Aferentes/fisiología , Neuronas Eferentes/fisiología , Rombencéfalo/fisiología , Animales , Conducta Animal/fisiología , Larva , Pez Cebra
18.
Proc Biol Sci ; 286(1897): 20182934, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963832

RESUMEN

A predator's ability to capture prey depends critically on how it coordinates its approach in response to a prey's motion. Flying insects, bats and raptors are capable of capturing prey with a strategy known as parallel navigation, which allows a predator to move directly towards the anticipated point of interception. It is unclear if predators using other modes of locomotion are employing this strategy when pursuing evasive prey. Using kinematic measurements and mathematical modelling, we tested whether bluefish ( Pomatomus saltatrix) pursue prey fish ( Fundulus heteroclitus) with parallel navigation. We found that the directional changes of bluefish were not consistent with this strategy, but rather were predicted by a strategy known as deviated pursuit. Although deviated pursuit requires few sensory cues and relatively modest motor coordination, a comparison of mathematical models suggested negligible differences in path length from parallel navigation, largely owing to the acceleration exhibited by bluefish near the end of a pursuit. Therefore, the strategy of bluefish is unlike flying predators, but offers comparable performance with potentially more robust control that may be well suited to the visual system and habitat of fishes. These findings offer a foundation for understanding the sensing and locomotor control of predatory fishes.


Asunto(s)
Perciformes/fisiología , Conducta Predatoria/fisiología , Navegación Espacial , Animales , Fenómenos Biomecánicos , Fundulidae , Modelos Biológicos
19.
Nature ; 502(7473): 693-7, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24077099

RESUMEN

Glycolysis, or its variations, is a fundamental metabolic pathway in life that functions in almost all organisms to decompose external or intracellular sugars. The pathway involves the partial oxidation and splitting of sugars to pyruvate, which in turn is decarboxylated to produce acetyl-coenzyme A (CoA) for various biosynthetic purposes. The decarboxylation of pyruvate loses a carbon equivalent, and limits the theoretical carbon yield to only two moles of two-carbon (C2) metabolites per mole of hexose. This native route is a major source of carbon loss in biorefining and microbial carbon metabolism. Here we design and construct a non-oxidative, cyclic pathway that allows the production of stoichiometric amounts of C2 metabolites from hexose, pentose and triose phosphates without carbon loss. We tested this pathway, termed non-oxidative glycolysis (NOG), in vitro and in vivo in Escherichia coli. NOG enables complete carbon conservation in sugar catabolism to acetyl-CoA, and can be used in conjunction with CO2 fixation and other one-carbon (C1) assimilation pathways to achieve a 100% carbon yield to desirable fuels and chemicals.


Asunto(s)
Carbono/metabolismo , Glucólisis , Monosacáridos/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosadifosfatos/metabolismo , Ingeniería Metabólica , Oxidación-Reducción , Xilosa/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(46): 13180-13185, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27794122

RESUMEN

Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2 This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO2 to formate serves as a CO2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO2 via two biochemical reactions: the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO2 uptake, and provided physical evidence of a distinct in vivo "rPFOR-PFL shunt" to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO2 fixation via the reductive C1 metabolic pathway in C. thermocellum These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO2 as well.


Asunto(s)
Dióxido de Carbono/metabolismo , Celulosa/metabolismo , Clostridium thermocellum/metabolismo , Reactores Biológicos , Carbono/metabolismo , Clostridium thermocellum/efectos de los fármacos , Clostridium thermocellum/genética , Clostridium thermocellum/crecimiento & desarrollo , Fermentación , Hidrógeno/metabolismo , Bicarbonato de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA