Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38199248

RESUMEN

This study examined the effect of combining visual and olfactory cues to attract oriental fruit flies (OFFs). Six different colored light-emitting diodes (LEDs) served as a visual attractant and methyl eugenol served as olfactory bait to lure male flies. An internet of things (IoT)-based pest monitoring system, consisting of sensor nodes, a gateway, and automatic counting traps, was deployed in the field to automatically collect environmental data and pest counts. The results of the calibrated experiments indicated that green, yellow, or red LEDs exhibited better performance in attracting flies than white, purple, or blue LEDs or no LEDs. With an accurate combination of visual and olfactory cues, the proposed IoT-based pest monitoring system may be an effective tool in agricultural pest management, given its advantages for efficiently capturing OFFs in a labor and time saving manner, providing accurate information regarding increases in pest populations, and enabling long-term, real-time data collection.


Asunto(s)
Internet de las Cosas , Tephritidae , Masculino , Animales , Señales (Psicología) , Agricultura
2.
IEEE Trans Cybern ; 45(10): 2309-22, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25532143

RESUMEN

One of the critical concerns in wireless sensor networks (WSNs) is the continuous maintenance of sensing coverage. Many particular applications, such as battlefield intrusion detection and object tracking, require a full-coverage at any time, which is typically resolved by adding redundant sensor nodes. With abundant energy, previous studies suggested that the network lifetime can be maximized while maintaining full coverage through organizing sensor nodes into a maximum number of disjoint sets and alternately turning them on. Since the power of sensor nodes is unevenly consumed over time, and early failure of sensor nodes leads to coverage loss, WSNs require dynamic coverage maintenance. Thus, the task of permanently sustaining full coverage is particularly formulated as a hybrid of disjoint set covers and dynamic-coverage-maintenance problems, and both have been proven to be nondeterministic polynomial-complete. In this paper, a hybrid memetic framework for coverage optimization (Hy-MFCO) is presented to cope with the hybrid problem using two major components: 1) a memetic algorithm (MA)-based scheduling strategy and 2) a heuristic recursive algorithm (HRA). First, the MA-based scheduling strategy adopts a dynamic chromosome structure to create disjoint sets, and then the HRA is utilized to compensate the loss of coverage by awaking some of the hibernated nodes in local regions when a disjoint set fails to maintain full coverage. The results obtained from real-world experiments using a WSN test-bed and computer simulations indicate that the proposed Hy-MFCO is able to maximize sensing coverage while achieving energy efficiency at the same time. Moreover, the results also show that the Hy-MFCO significantly outperforms the existing methods with respect to coverage preservation and energy efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA