RESUMEN
Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.
Asunto(s)
Frutas/genética , Metaboloma , Metabolómica/métodos , Fitomejoramiento/métodos , Solanum lycopersicum/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Selección ArtificialRESUMEN
Sex differences and evolutionary differences are critical biological issues. Ginkgo is an ancient lineage of dioecious gymnosperms with special value for studying the mechanism of sex determination in plants. However, the major genetic basic underlying sex chromosomes remains to be uncovered. In this study, we identify the sex-determining region of Ginkgo and locate it to the area from megabases 48 to 75 on chromosome 2. We find that the male sex-determining region of Ginkgo contains more than 200 genes, including four MADS-box genes, demonstrating that the Ginkgo sex determination system is of the XY type. We also find that genetic sex differences result in specialized flavonoid metabolism and regulation in each sex. These findings establish a foundation for revealing the molecular mechanism of sexual dimorphism and promoting the development of the Ginkgo industry.
Asunto(s)
Ginkgo biloba/genética , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Polen/genética , Cromosomas de las Plantas , Marcadores Genéticos , Genoma de Planta , Ginkgo biloba/metabolismo , Proteínas de Dominio MADS/genética , Óvulo Vegetal/metabolismo , Polen/metabolismo , Procesos de Determinación del SexoRESUMEN
Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.
Asunto(s)
Alcaloides , Sistema Enzimático del Citocromo P-450 , Ingeniería Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biosíntesis , Alcaloides/genética , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biosíntesis , Taxoides/metabolismo , Taxus/enzimología , Taxus/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genéticaRESUMEN
Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novogenome assembly of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase (TPS) genes associated with flower fragrance are considerably amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and benzylalcohol O-acetyltransferase/anthocyanin O-hydroxycinnamoyltransferases/anthranilate N-hydroxycinnamoyl/benzoyltransferase/deacetylvindoline 4-O-acetyltransferase (BAHD) superfamilies were identified to be related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing an increase in copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in ß-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis, and provides a foundation for functional genomic research and variety improvements in Jasminum.
Asunto(s)
Jasminum , Jasminum/genética , Jasminum/metabolismo , Odorantes , Ciclopentanos/metabolismo , Flores/genética , Flores/metabolismoRESUMEN
Euphyllophytes encompass almost all extant plants, including two sister clades, ferns and seed plants. Decoding genomes of ferns is the key to deep insight into the origin of euphyllophytes and the evolution of seed plants. Here we report a chromosome-level genome assembly of Adiantum capillus-veneris L., a model homosporous fern. This fern genome comprises 30 pseudochromosomes with a size of 4.8-gigabase and a contig N50 length of 16.22 Mb. Gene co-expression network analysis uncovered that homospore development in ferns has relatively high genetic similarities with that of the pollen in seed plants. Analysing fern defence response expands understanding of evolution and diversity in endogenous bioactive jasmonates in plants. Moreover, comparing fern genomes with those of other land plants reveals changes in gene families important for the evolutionary novelties within the euphyllophyte clade. These results lay a foundation for studies on fern genome evolution and function, as well as the origin and evolution of euphyllophytes.
Asunto(s)
Adiantum , Helechos , Adiantum/genética , Helechos/genética , Genoma de Planta , FilogeniaRESUMEN
The concentration of chlorogenic acids (CGAs), is tightly associated with the appearance, taste, and nutrient content of potato tubers. Manipulation of tuber CGA concentrations allows for the breeding of quality traits in potatoes. Currently, a hybrid potato breeding system that aims to convert tetraploid potato into a diploid seed crop represents a new development in potato breeding. Unfortunately, however, a systematic study of CGA formation is very limited in diploid potatoes. Here, using a diverse panel of diploid potatoes, including 40 ancestors and 374 landraces, we analyzed the influence of location, environment, genetic basis, as well as expression of enzymes, in affecting the CGA concentrations in diploid lines. We revealed a selection of the decreased CGA level of tuber flesh in the domestication of diploid potatoes. Moreover, we identified 18 SNPs associated with tuber CGA levels using re-sequenced genome data. This study provides a basis for the breeding of high-quality potato by taking into consideration customer preferences.
RESUMEN
Potato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.
Asunto(s)
Diploidia , Proteínas F-Box/genética , Genes de Plantas , Proteínas de Plantas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/genética , Flores/genética , Filogenia , Fitomejoramiento , Plantas Modificadas Genéticamente , Ribonucleasas/genética , SemillasRESUMEN
The ancient gymnosperm genus Taxus is the exclusive source of the anticancer drug paclitaxel, yet no reference genome sequences are available for comprehensively elucidating the paclitaxel biosynthesis pathway. We have completed a chromosome-level genome of Taxus chinensis var. mairei with a total length of 10.23 gigabases. Taxus shared an ancestral whole-genome duplication with the coniferophyte lineage and underwent distinct transposon evolution. We discovered a unique physical and functional grouping of CYP725As (cytochrome P450) in the Taxus genome for paclitaxel biosynthesis. We also identified a gene cluster for taxadiene biosynthesis, which was formed mainly by gene duplications. This study will facilitate the elucidation of paclitaxel biosynthesis and unleash the biotechnological potential of Taxus.