Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 78(5): 1384-1401, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631007

RESUMEN

BACKGROUND AND AIMS: HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS: First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS: This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Progresión de la Enfermedad , Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas Represoras/metabolismo
2.
Cell Commun Signal ; 22(1): 71, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279122

RESUMEN

Integrinß-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.


Asunto(s)
Integrina beta1 , Neoplasias , Línea Celular Tumoral , Integrina beta1/metabolismo , Transducción de Señal , Proteínas Portadoras , Neoplasias/terapia
3.
J Gene Med ; 25(4): e3477, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740760

RESUMEN

BACKGROUND: There have been many reports of long non-coding RNAs (lncRNAs) in tumors, and abnormally expressed lncRNA is closely related to hepatocellular carcinoma (HCC). The mechanism of LINC00607 in HCC has not been reported. METHODS: We utilized qPCR to evaluate the RNA expression level. The mechanism of MYC binding to the LINC00607 promoter was revealed through chromatin immunoprecipitation assay and dual luciferase reporter assay. The proliferation and invasive ability were evaluated by CCK-8 and transwell assays. The relation between LINC00607 and miR-584-3p was assessed by RNA immunoprecipitation assay and dual luciferase reporter assay. The level of ROCK1 was evaluated by qPCR and western blot. RESULTS: In this research, we found that the expression of LINC00607 was higher in HCC tissues when compared with that in the adjacent non-tumor tissues. Meanwhile, MYC was observed to interact with the LINC00607 promoter, leading to the upregulation of LINC00607 in HCC. We further revealed that LINC00607 functioned as a sponge for miR-584-3p. Cell proliferation and migration assays showed that miR-584-3p may inhibit the HCC progression. Moreover, we found that the miR-584-3p inhibitor could reverse the effects of LINC00607 downregulation in HCC through rescue experiments. Through verification, miR-584-3p bound to the 3' UTR of ROCK1 to downregulate its expression. CONCLUSION: LINC00607 regulated by MYC can promote the proliferation, migration and invasion of HCC cells through the miR-584-3p/ROCK1 axis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Liver Int ; 43(2): 471-489, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385489

RESUMEN

BACKGROUND: Long non-coding RNAs (LncRNAs) have been demonstrated to associate with a variety of cancers. However, the mechanisms of LncRNAs in hepatocellular carcinoma (HCC) progression are still not fully clarified. METHODS: LINC01608 expression level in HCC and adjacent normal tissues was detected by real-time-quantitively PCR (RT-qPCR) in clinical samples and in situ hybridization (ISH) in tissue microarray. Several functional assays were performed to determine the biological effects of LINC01608 in HCC cells in vitro, while subcutaneous xenograft models and lung metastasis models in nude mice and immunohistochemistry (IHC) results showed the role of LINC01608 in HCC progression in vivo. The combination of LINC01608 with miR-875-5p and target genes was elucidated by dual-luciferase report assays, RNA immunoprecipitation (RIP) assays and fluorescence in situ hybridization (FISH) assays. Finally, bioinformatics analysis and chromatin immunoprecipitation (CHIP) were performed to investigate the mechanism of Yin Yang-1 (YY1) regulating LINC01608 transcription. RESULTS: LINC01608 was overexpressed in HCC tissues, and high LINC01608 expression predicted poor overall survival (OS) and disease-free survival (DFS) in HCC patients. LINC01608 could promote HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Furthermore, we demonstrated that LINC01608 could sponge to miR-875-5p and activate the EGFR/ERK pathway. Moreover, we identified transcriptional factor YY1 could bind to the promoter of LINC01608 and induce its transcription. CONCLUSION: LINC01608 could serve as a promising prognostic biomarker of HCC. YY1-activated LINC01608 could promote HCC progression by associating with miR-875-5p to induce the EGFR/ERK signalling pathway. This discovery might provide therapeutic strategies for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones Desnudos , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Receptores ErbB/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/uso terapéutico
5.
Cancer Cell Int ; 22(1): 24, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033067

RESUMEN

BACKGROUND: The Src homology and collagen 4 (SHC4) is an important intracellular adaptor protein that has been shown to play a pro-cancer role in melanoma and glioma. However, the biological function and detailed mechanisms of SHC4 in hepatocellular carcinoma progression are unclear. This study aimed to evaluate the potential prognostic and treatment value of SHC4 in patients with HCC. METHODS: The expression status of SHC4 in HCC tissues were investigated by immunohistochemistry and western blotting. Clinical significance of SHC4 was evaluated in a large cohort of HCC patients. The effects of SHC4 repression or overexpression on migration, invasion, and tumor growth were detected by colony formation assay, wound healing, transwell assays, and xenograft assay. Cell cycle and EMT-related proteins were detected by western blotting and immunofluorescence. In addition, the molecular regulation between SHC4 and STAT3 signaling in HCC were discovered by western blotting, immunofluorescence and xenograft assay. RESULTS: SHC4 was overexpressed in HCC compared to adjacent normal liver tissues and increased SHC4 expression was associated with high AFP level, incomplete tumor encapsulation, poor tumor differentiation and poor prognosis. SHC4 was shown to enhance cell proliferation, colony formation, cells migration and invasion in vitro, and promotes cell cycle progression and EMT process in HCC cells. Tumor xenograft model assay confirmed the oncogenic role of SHC4 in tumorigenicity in nude mice. Moreover, activation of STAT3 signaling was found in the SHC4 overexpressed HCC cells and HCC tissues. Further intervention of STAT3 confirmed STAT3 as an important signaling pathway for the oncogenic role of SHC4 in HCC. CONCLUSIONS: Together, our results reveal that SHC4 activates STAT3 signaling to promote HCC progression, which may provide new clinical ideas for the treatment of HCC.

6.
J Fluoresc ; 32(5): 1949-1957, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35776261

RESUMEN

The determination of pyrophosphate and alkaline phosphatase activity plays a significant role in medical diagnosis. In this work, a label-free "ON-OFF-ON" fluorescence strategy is developed for the analysis of pyrophosphate and alkaline phosphatase activity. Using PolyT single strand DNA as templates to synthesize fluorescent copper nanoparticles, the coordination effect of pyrophosphoric acid on Cu2+ inhibited the generation of fluorescence. Afterwards, the addition of alkaline phosphatase into hydrolyze pyrophosphoric acid resulted in the release of Cu2+, whereby the fluorescence intensity could be recovered. Thereupon enhanced-sensitivity for alkaline phosphatase was obtained (0.1 mU/L), much better than previously reported methods. Meanwhile, it could be performed directly in homogeneous solution, which was very close to the actual activity level of alkaline phosphatase under physiological conditions. Likewise, satisfactory results were also obtained in specificity assessment, which demonstrated its potential application in clinical diagnosis. Notably, a new, sensitive, low-cost, short-time, and high-sensitivity platform for alkaline phosphatase detection was constructed, and the design of biosensor using DNA-templated Copper nanoclusters (CuNCs) was instructed in this study.


Asunto(s)
Difosfatos , Nanopartículas del Metal , Fosfatasa Alcalina/análisis , Fosfatasa Alcalina/metabolismo , Cobre/análisis , ADN de Cadena Simple , Colorantes Fluorescentes , Espectrometría de Fluorescencia/métodos
7.
Hepatology ; 72(3): 997-1012, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31903610

RESUMEN

BACKGROUND AND AIMS: Transforming growth factor beta (TGF-ß) suppresses early stages of tumorigenesis, but contributes to the migration and metastasis of cancer cells. However, the role of TGF-ß signaling in invasive prometastatic hepatocellular carcinoma (HCC) is poorly understood. In this study, we investigated the roles of canonical TGF-ß/mothers against decapentaplegic homolog 3 (SMAD3) signaling and identified downstream effectors on HCC migration and metastasis. APPROACH AND RESULTS: By using in vitro trans-well migration and invasion assays and in vivo metastasis models, we demonstrated that SMAD3 and protein tyrosine phosphatase receptor epsilon (PTPRε) promote migration, invasion, and metastasis of HCC cells in vitro and in vivo. Further mechanistic studies revealed that, following TGF-ß stimulation, SMAD3 binds directly to PTPRε promoters to activate its expression. PTPRε interacts with TGFBR1/SMAD3 and facilitates recruitment of SMAD3 to TGFBR1, resulting in a sustained SMAD3 activation status. The tyrosine phosphatase activity of PTPRε is important for binding with TGFBR1, recruitment and activation of SMAD3, and its prometastatic role in vitro. A positive correlation between pSMAD3/SMAD3 and PTPRε expression was determined in HCC samples, and high expression of SMAD3 or PTPRε was associated with poor prognosis of patients with HCC. CONCLUSIONS: PTPRε positive feedback regulates TGF-ß/SMAD3 signaling to promote HCC metastasis.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metástasis de la Neoplasia , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Proteína smad3/metabolismo
8.
BMC Gastroenterol ; 21(1): 284, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34247571

RESUMEN

BACKGROUND: Gastrointestinal adenocarcinoma (GIAD) has caused a serious disease burden globally. Targeted therapy for the transforming growth factor beta (TGF-ß) signaling pathway is becoming a reality. However, the molecular characterization of TGF-ß associated signatures in GIAD requires further exploration. METHODS: Multi-omics data were collected from TCGA and GEO database. A pivotal unsupervised clustering for TGF-ß level was performed by distinguish status of TGF-ß associated genes. We analyzed differential mRNAs, miRNAs, proteins gene mutations and copy number variations in both clusters for comparison. Enrichment of pathways and gene sets were identified in each type of GIAD. Then we performed differential mRNA related drug response by collecting data from GDSC. At last, a summarized deep neural network for TGF-ß status and GIADs was constracted. RESULTS: The TGF-ßhigh group had a worse prognosis in overall GIAD patients, and had a worse prognosis trend in gastric cancer and colon cancer specifically. Signatures (including mRNA and proteins) of the TGF-ßhigh group is highly correlated with EMT. According to miRNA analysis, miR-215-3p, miR-378a-5p, and miR-194-3p may block the effect of TGF-ß. Further genomic analysis showed that TGF-ßlow group had more genomic changes in gastric cancer, such as TP53 mutation, EGFR amplification, and SMAD4 deletion. And drug response dataset revealed tumor-sensitive or tumor-resistant drugs corresponding to TGF-ß associated mRNAs. Finally, the DNN model showed an excellent predictive effect in predicting TGF-ß status in different GIAD datasets. CONCLUSIONS: We provide molecular signatures associated with different levels of TGF-ß to deepen the understanding of the role of TGF-ß in GIAD and provide potential drug possibilities for therapeutic targets in different levels of TGF-ß in GIAD.


Asunto(s)
Adenocarcinoma , MicroARNs , Preparaciones Farmacéuticas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Variaciones en el Número de Copia de ADN , Humanos , MicroARNs/genética , Factor de Crecimiento Transformador beta/genética
9.
J Cell Biochem ; 121(3): 2582-2594, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692036

RESUMEN

Although methods in diagnosis and therapy of hepatocellular carcinoma (HCC) have made significant progress in decades, the overall survival (OS) of HCC remains dissatisfactory, so it is particularly important to find better diagnostic and prognostic biomarkers. In this study, we found a more reliable potential diagnostic biomarkers and constructed a more accurate prognostic evaluation model based on integrated transcriptome sequencing analysis of multiple independent data sets. First, we performed quality evaluation and differential analysis on seven Gene Expression Omnibus (GEO) data sets, and then comprehensively analyzed the differentially expressed genes with a robust rank aggregation algorithm. Next, Least absolute shrinkage and selection operator (LASSO) regression was used to establish an 8-gene prognostic risk score (RS) model. Finally, the prognostic model was further validated in the GEO data set. Also, RS has independence on other clinicopathological characteristics but has similarities in prognostic assessment compared with the T stage. Moreover, the combination of T stage and prognostic RS model based on the 8-gene had a better prognostic evaluation effect. In brief, our research suggest that the prognostic risk model of 8 genes has important clinical significance in HCC patients, and can further enrich the prognostic guidance value of the traditional T stage.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Genoma Humano , Neoplasias Hepáticas/patología , Transcriptoma , Carcinoma Hepatocelular/genética , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
10.
J Cell Biochem ; 119(10): 8419-8431, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29904948

RESUMEN

Chronic hepatitis B virus (HBV) infection remains the most common risk factor for hepatocellular carcinoma (HCC). High HBV surface antigen (HBsAg) levels are highly correlated with hepatocarcinogenesis and HBV-associated HCC development. However, the role and detailed mechanisms associated with HBsAg in HCC development remain elusive. In this study, we designed specific single guide RNAs (sgRNAs) targeting the open reading frames, preS1/preS2/S, of the HBV genome and established HBsAg knockout HCC cell lines using the CRISPR/Cas9 system. We showed that knockout of HBsAg in HCC cell lines decreased HBsAg expression and significantly attenuated HCC proliferation in vitro, as well as tumorigenicity in vivo. We also found that overexpression of HBsAg, including the large (LHBs), middle (MHBs), and small (SHBs) surface proteins promoted proliferation and tumor formation in HCC cells. Moreover, we demonstrated that knockout of HBsAg in HCC cells decreased interleukin (IL)-6 production and inhibited signal transducer and activator of transcription 3 (STAT3) signaling, while overexpression of HBsAg induced a substantial accumulation of pY-STAT3. Collectively, these results highlighted the tumorigenic role of HBsAg and implied that the IL-6-STAT3 pathway may be implicated in the HBsAg-mediated malignant potential of HBV-associated HCC.


Asunto(s)
Sistemas CRISPR-Cas , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/patología , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/metabolismo , Neoplasias Hepáticas/patología , Animales , Carcinoma Hepatocelular/etiología , Proliferación Celular , Técnicas de Inactivación de Genes/métodos , Células HEK293 , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/análisis , Antígenos de Superficie de la Hepatitis B/genética , Hepatitis B Crónica/complicaciones , Humanos , Interleucina-6/análisis , Interleucina-6/metabolismo , Neoplasias Hepáticas/etiología , Ratones Desnudos , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Clin Transl Med ; 14(1): e1563, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38279869

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS: The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS: High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS: Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Peptidasa Específica de Ubiquitina 7/genética
12.
Healthc Technol Lett ; 11(1): 21-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370162

RESUMEN

This study compared the accuracy of facial landmark measurements using deep learning-based fiducial marker (FM) and arbitrary width reference (AWR) approaches. It quantitatively analysed mandibular hard and soft tissue lateral excursions and head tilting from consumer camera footage of 37 participants. A custom deep learning system recognised facial landmarks for measuring head tilt and mandibular lateral excursions. Circular fiducial markers (FM) and inter-zygion measurements (AWR) were validated against physical measurements using electrognathography and electronic rulers. Results showed notable differences in lower and mid-face estimations for both FM and AWR compared to physical measurements. The study also demonstrated the comparability of both approaches in assessing lateral movement, though fiducial markers exhibited variability in mid-face and lower face parameter assessments. Regardless of the technique applied, hard tissue movement was typically seen to be 30% less than soft tissue among the participants. Additionally, a significant number of participants consistently displayed a 5 to 10° head tilt.

13.
Oncogene ; 42(45): 3303-3318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37833558

RESUMEN

MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.


Asunto(s)
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal , Carcinogénesis , Transformación Celular Neoplásica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Microambiente Tumoral/genética
14.
Exp Hematol Oncol ; 12(1): 52, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268997

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.

15.
Oncogene ; 42(2): 113-123, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380240

RESUMEN

Transforming growth factor beta (TGF-ß) signaling pathway plays important roles in hepatocellular carcinoma (HCC) progression. Long intergenic non-protein coding RNAs (lincRNAs) are important components of TGF-ß signaling pathway and perform their functions through different mechanisms. Here, we found that LINC02551 was activated by TGF-ß transcriptionally and identified a 174-amino-acid peptide, Jun binding micropeptide (JunBP), encoded by LINC02551 in HCC tissues and HCC cell lines. Functional study showed that JunBP promotes HCC metastasis through binding to c-Jun and subsequent promotion of its phosphorylated activation. Activated c-Jun has higher binding affinity to SMAD3, which in turn leads to more SMAD3 recruited to the promoter region of LINC02551. We find a positive feedback among them, and this mechanism provides a novel potential prognostic biomarker and therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Línea Celular Tumoral , Micropéptidos
16.
Exp Hematol Oncol ; 12(1): 1, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609413

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is a prevalent modification of mRNA and is known to play important roles in tumorigenesis in many types of cancer. The function of N6-methyladenosine (m6A) RNA methylation depends on a variety of methyltransferases and demethylases. AlkB homolog 5 (ALKBH5) is a demethylase, and its biological function has not been completely explored in HCC. RESULTS: ALKBH5 is downregulated and has antitumor effects in HCC cells. In addition, Progestin and AdipoQ Receptor 4 (PAQR4) was identified as a downstream target of ALKBH5 based on transcriptome sequencing and validation studies. We found that ALKBH5 decreases PAQR4 mRNA and protein expression in an N6-methyladenosine (m6A)-dependent manner. The study also showed that ALKBH5 changes PAQR4 expression via the m6A reader IGF2BP1. In both in vivo and in vitro experiments, PAQR4 showed a strong association with the development of HCC. Finally, we found that PAQR4 interacts with AKT and enhances PI3K/AKT pathway activation. CONCLUSIONS: ALKBH5 inhibits HCC growth by downregulating PAQR4 expression in an m6A-dependent manner, therefore suppressing PI3K/AKT pathway activation.

17.
Eur J Trauma Emerg Surg ; 49(2): 1057-1069, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36374292

RESUMEN

PURPOSE: Convolutional neural networks (CNNs) are increasingly being developed for automated fracture detection in orthopaedic trauma surgery. Studies to date, however, are limited to providing classification based on the entire image-and only produce heatmaps for approximate fracture localization instead of delineating exact fracture morphology. Therefore, we aimed to answer (1) what is the performance of a CNN that detects, classifies, localizes, and segments an ankle fracture, and (2) would this be externally valid? METHODS: The training set included 326 isolated fibula fractures and 423 non-fracture radiographs. The Detectron2 implementation of the Mask R-CNN was trained with labelled and annotated radiographs. The internal validation (or 'test set') and external validation sets consisted of 300 and 334 radiographs, respectively. Consensus agreement between three experienced fellowship-trained trauma surgeons was defined as the ground truth label. Diagnostic accuracy and area under the receiver operator characteristic curve (AUC) were used to assess classification performance. The Intersection over Union (IoU) was used to quantify accuracy of the segmentation predictions by the CNN, where a value of 0.5 is generally considered an adequate segmentation. RESULTS: The final CNN was able to classify fibula fractures according to four classes (Danis-Weber A, B, C and No Fracture) with AUC values ranging from 0.93 to 0.99. Diagnostic accuracy was 89% on the test set with average sensitivity of 89% and specificity of 96%. External validity was 89-90% accurate on a set of radiographs from a different hospital. Accuracies/AUCs observed were 100/0.99 for the 'No Fracture' class, 92/0.99 for 'Weber B', 88/0.93 for 'Weber C', and 76/0.97 for 'Weber A'. For the fracture bounding box prediction by the CNN, a mean IoU of 0.65 (SD ± 0.16) was observed. The fracture segmentation predictions by the CNN resulted in a mean IoU of 0.47 (SD ± 0.17). CONCLUSIONS: This study presents a look into the 'black box' of CNNs and represents the first automated delineation (segmentation) of fracture lines on (ankle) radiographs. The AUC values presented in this paper indicate good discriminatory capability of the CNN and substantiate further study of CNNs in detecting and classifying ankle fractures. LEVEL OF EVIDENCE: II, Diagnostic imaging study.


Asunto(s)
Fracturas de Tobillo , Ortopedia , Humanos , Fracturas de Tobillo/diagnóstico por imagen , Redes Neurales de la Computación , Radiografía , Peroné/diagnóstico por imagen
18.
Biomed Pharmacother ; 165: 115044, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354815

RESUMEN

Osteoporosis (OP), characterized by an imbalance of bone remodeling between formation and resorption, has become a health issue worldwide. The receptor for advanced glycation end product (RAGE), a transmembrane protein in the immunoglobin family, has multiple ligands and has been involved in many chronic diseases, such as diabetes and OP. Increasing evidence shows that activation of the RAGE signaling negatively affects bone remodeling. Ligands, such as advanced glycation end products (AGEs), S100, ß-amyloid (Aß), and high mobility group box 1 (HMGB1), have been well documented that they may negatively regulate the proliferation and differentiation of osteoblasts and positively stimulate osteoclastogenesis by activating the expression of RAGE. In this review, we comprehensively discuss the structure of RAGE and its biological functions in the pathogenesis of OP. The research findings suggest that RAGE signaling has become a potential target for the therapeutic management of OP.


Asunto(s)
Proteína HMGB1 , Osteoporosis , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Ligandos , Transducción de Señal/fisiología , Productos Finales de Glicación Avanzada/metabolismo , Proteína HMGB1/metabolismo
19.
Int J Cardiovasc Imaging ; 39(7): 1313-1321, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37150757

RESUMEN

We sought to determine the cardiac ultrasound view of greatest quality using a machine learning (ML) approach on a cohort of transthoracic echocardiograms (TTE) with abnormal left ventricular (LV) systolic function. We utilize an ML model to determine the TTE view of highest quality when scanned by sonographers. A random sample of TTEs with reported LV dysfunction from 09/25/2017-01/15/2019 were downloaded from the regional database. Component video files were analyzed using ML models that jointly classified view and image quality. The model consisted of convolutional layers for extracting spatial features and Long Short-term Memory units to temporally aggregate the frame-wise spatial embeddings. We report the view-specific quality scores for each TTE. Pair-wise comparisons amongst views were performed with Wilcoxon signed-rank test. Of 1,145 TTEs analyzed by the ML model, 74.5% were from males and mean LV ejection fraction was 43.1 ± 9.9%. Maximum quality score was best for the apical 4 chamber (AP4) view (70.6 ± 13.9%, p<0.001 compared to all other views) and worst for the apical 2 chamber (AP2) view (60.4 ± 15.4%, p<0.001 for all views except parasternal short-axis view at mitral/papillary muscle level, PSAX M/PM). In TTEs scanned by professional sonographers, the view with greatest ML-derived quality was the AP4 view.


Asunto(s)
Ecocardiografía , Disfunción Ventricular Izquierda , Masculino , Humanos , Valor Predictivo de las Pruebas , Ecocardiografía/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Volumen Sistólico , Aprendizaje Automático
20.
Cell Death Dis ; 13(10): 852, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207306

RESUMEN

N6-methyladenosine (m6A) is a widely investigated RNA modification in studies on the "epigenetic regulation" of mRNAs that is ubiquitously present in eukaryotes. Abnormal changes in m6A levels are closely related to the regulation of RNA metabolism, heat shock stress, tumor occurrence, and development. m6A modifications are catalyzed by the m6A writer complex, which contains RNA methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP), and other proteins with methyltransferase (MTase) capability, such as RNA-binding motif protein 15 (RBM15), KIAA1429 and zinc finger CCCH-type containing 13 (ZC3H13). Although METTL3 is the main catalytic subunit, WTAP is a regulatory subunit whose function is to recruit the m6A methyltransferase complex to the target mRNA. Specifically, WTAP is required for the accumulation of METTL3 and METTL14 in nuclear speckles. In this paper, we briefly introduce the molecular mechanism of m6A modification. Then, we focus on WTAP, a component of the m6A methyltransferase complex, and introduce its structure, localization, and physiological functions. Finally, we describe its roles and mechanisms in cancer.


Asunto(s)
ARN , Proteínas WT1 , Adenosina/metabolismo , Metiltransferasas/metabolismo , ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA