Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 1): 114352, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210607

RESUMEN

All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in circulating blood proteins of an individual, or all members of a population, can provide an early indicator of adverse health outcomes. Non-targeted measurement of all detectable proteins in a blood sample can indicate physiological changes. In the context of wildlife toxicology, this technique can provide a powerful tool for discovering biomarkers of chemical exposure and effect. This study presents a non-targeted examination of the protein abundance in sea turtle plasma obtained from three geographically distinct foraging populations of green turtles (Chelonia mydas) on the Queensland coast. Relative changes in protein expression between sites were compared, and potential markers of contaminant exposure were investigated. Blood plasma protein profiles were distinct between populations, with 85 out of the 116 identified proteins differentially expressed (p < 0.001). The most strongly dysregulated proteins were predominantly acute phase proteins, suggestive of differing immune status between the populations. The highest upregulation of known markers of immunotoxicity, such as pentraxin fusion and complement factor h, was observed in the Moreton Bay turtles. Forty-five different organohalogens were also measured in green turtle plasma samples as exposure to some organohalogens (e.g., polychlorinated biphenyls) has previously been identified as a cause for immune dysregulation in marine animals. The few detected organohalogens were at very low (pg/mL) concentrations in turtles from all sites, and are unlikely to be the cause of the proteome differences observed. However, the changes in protein expression may be indicative of exposure to other chemicals or environmental stressors. The results of this study provide important information about differences in protein expression between different populations of turtles, and guide future toxicological and health studies on east-Australian green sea turtles.


Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Humanos , Tortugas/metabolismo , Contaminantes Químicos del Agua/análisis , Proteómica , Australia , Inmunidad
2.
Conserv Genet ; 23(6): 995-1010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36397975

RESUMEN

Globally distributed marine taxa are well suited for investigations of biogeographic impacts on genetic diversity, connectivity, and population demography. The sea turtle genus Lepidochelys includes the wide-ranging and abundant olive ridley (L. olivacea), and the geographically restricted and 'Critically Endangered' Kemp's ridley (L. kempii). To investigate their historical biogeography, we analyzed a large dataset of mitochondrial DNA (mtDNA) sequences from olive (n = 943) and Kemp's (n = 287) ridleys, and genotyped 15 nuclear microsatellite loci in a global sample of olive ridleys (n = 285). We found that the ridley species split ~ 7.5 million years ago, before the Panama Isthmus closure. The most ancient mitochondrial olive ridley lineage, located in the Indian Ocean, was dated to ~ 2.2 Mya. Both mitochondrial and nuclear markers revealed significant structure for olive ridleys between Atlantic (ATL), East Pacific (EP), and Indo-West Pacific (IWP) areas. However, the divergence of mtDNA clades was very recent (< 1 Mya) with low within- clade diversity, supporting a recurrent extinction-recolonization model for these ocean regions. All data showed that ATL and IWP groups were more closely related than those in the EP, with mtDNA data supporting recent recolonization of the ATL from the IWP. Individual olive ridley dispersal between the ATL, EP, and IN/IWP could be interpreted as more male- than female-biased, and genetic diversity was lowest in the Atlantic Ocean. All populations showed signs of recent expansion, and estimated time frames were concordant with their recent colonization history. Investigating species abundance and distribution changes over time is central to evolutionary biology, and this study provides a historical biogeographic context for marine vertebrate conservation and management. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-022-01465-3.

3.
J Anim Ecol ; 89(4): 1008-1016, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31785174

RESUMEN

Patterns of animal movement associated with foraging lie at the heart of many ecological studies and often animals face decisions of staying in an environment they know versus relocating to new sites. The lack of knowledge of new foraging sites means there is risk associated with a decision to relocate (e.g. poor foraging) as well as a potential benefit (e.g. improved foraging). Using a unique long-term satellite tracking dataset for several sea turtle species, combined with capture-mark-recapture data extending over 50 years, we show how, across species, individuals generally maintain tight fidelity to specific foraging sites after extended (up to almost 10,000 km) migration to and from distant breeding sites as well as across many decades. Migrating individuals often travelled through suitable foraging areas en route to their 'home' site and so extended their journeys to maintain foraging site fidelity. We explore the likely mechanistic underpinnings of this trait, which is also seen in some migrating birds, and suggest that individuals will forgo areas of suitable forage encountered en route during migration when they have poor knowledge of the long-term suitability of those sites, making relocation to those sites risky.


Asunto(s)
Tortugas , Animales , Aves , Cruzamiento
4.
Glob Chang Biol ; 25(2): 744-752, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30513551

RESUMEN

Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FT-IR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats.


Asunto(s)
Exposición a Riesgos Ambientales , Plásticos/análisis , Tortugas/fisiología , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos/fisiología , Océano Atlántico , Monitoreo del Ambiente , Mar Mediterráneo , Océano Pacífico , Plásticos/clasificación , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/clasificación
5.
Ecotoxicol Environ Saf ; 173: 63-70, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30769204

RESUMEN

Chemical contaminants are known to accumulate in marine megafauna globally, but little is known about how this impacts animal health. In vitro assays offer an ethical, reproducible and cost-effective alternative to live animal toxicity testing on large, long-lived or threatened species, such as sea turtles. However, using a cell culture from a single animal raise the question of whether the toxicity observed adequately represents the toxicity in that species. This study examined variation in the cytotoxic response of primary skin fibroblasts established from seven green (Chelonia mydas) and five loggerhead (Caretta caretta) sea turtles. Cell viability using resazurin dye was examined in response to exposure to five contaminants. The variation in cytotoxicity was generally low (within a factor of five) for both independent analyses of the same cell culture, and cell cultures from different individuals. This low within and between cell culture variation indicates that primary sea turtle cell cultures can provide a suitable approach to understanding toxicity in sea turtles. In addition, green and loggerhead turtle cells showed similar toxicity to the compounds tested, indicating that only subtle differences in chemical sensitivity may exist between sea turtle species. This study provides a framework for using species-specific cell cultures in future toxicological studies on sea turtles. Although in vivo studies are the gold standard for toxicological studies and species-specific risk assessments, the development of in vitro tools can provide important information when in vivo studies are not possible or practical. For large, endangered species such as sea turtles that are exposed to, and accumulate, a large number of contaminants, using validated cell cultures may facilitate the rapid assessment of chemical risk to these animals.


Asunto(s)
Cultivo Primario de Células , Pruebas de Toxicidad/métodos , Tortugas/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Cultivo Primario de Células/normas , Piel/efectos de los fármacos , Piel/patología , Contaminantes Químicos del Agua/toxicidad
6.
J Hered ; 107(3): 199-213, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26615184

RESUMEN

Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.


Asunto(s)
Variación Genética , Genética de Población , Tortugas/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Evolución Molecular , Femenino , Haplotipos , Modelos Genéticos , Océano Pacífico , Filogenia , Filogeografía , Análisis de Secuencia de ADN
7.
Sci Total Environ ; 926: 171743, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38494020

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) pose a threat to organisms and ecosystems due to their persistent nature. Ecotoxicology endpoints used in regulatory guidelines may not reflect multiple, low-level but persistent stressors. This study examines the biological effects of PFAS on Eastern short-necked turtles in Queensland, Australia. In this study, blood samples were collected and analysed for PFAS, hormone levels, and functional omics endpoints. High levels of PFAS were found in turtles at the impacted site, with PFOS being the dominant constituent. The PFAS profiles of males and females differed, with males having higher PFAS concentrations. Hormone concentrations differed between impacted and reference sites in male turtles, with elevated testosterone and corticosterone indicative of stress. Further, energy utilisation, nucleotide synthesis, nitrogen metabolism, and amino acid synthesis were altered in both male and female turtles from PFAS-impacted sites. Both sexes show similar metabolic responses to environmental stressors from the PFAS-contaminated site, which may adversely affect their reproductive fitness. Purine metabolism, caffeine metabolism, and ferroptosis pathway changes in turtles can cause gout, cell death, and overall health problems. Further, the study showed that prolonged exposure to elevated PFAS levels in the wild could compromise turtle reproductive fitness by disrupting reproductive steroids and metabolic pathways.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Tortugas , Animales , Masculino , Femenino , Ecosistema , Aptitud Genética , Agua Dulce , Hormonas , Fluorocarburos/toxicidad
8.
Dis Aquat Organ ; 103(1): 1-7, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23482380

RESUMEN

Cold stress syndrome (CSS) is the term used to describe the range of clinical signs and chronic disease processes that can occur in Florida, USA, manatees Trichechus manatus latirostris exposed to water temperatures below 20°C for extended periods. Although no cold-related adverse events have been described in the closely related dugong Dugong dugon thus far, it has been established that they make movements in response to water temperatures lower than about 17 to 18°C. In this study, archive reports for dugong carcasses submitted to The University of Queensland School of Veterinary Science for post mortem examination during 2010 to 2012 were examined. These animals had been recovered from Moreton Bay, southeast Queensland, Australia, and 10 out of 14 fulfilled the criteria for 'potential cold stress cases.' Epidermal hyperplasia and secondary bacterial infection, serous atrophy of pericardial adipose tissue, and multisystem abscessation were features commonly noted in these cases. Water temperature data were correlated with the time of year that carcasses were submitted for examination. Higher numbers of carcasses diagnosed with potential CSS were noted during sustained periods in which water temperature was below 20°C. Given the pattern of increased submission of non-specifically, chronically unwell animals in the colder months and evidence that environmental conditions known to precipitate CSS occur in southeast Queensland, it is probable that, like manatees, dugongs in this area are affected by CSS. Further investigation to confirm and to better characterize the syndrome is recommended to refine management practices and improve treatment of affected animals.


Asunto(s)
Frío , Dugong , Estrés Fisiológico , Animales , Ecosistema , Femenino , Masculino , Queensland , Estaciones del Año , Factores de Tiempo
9.
Mar Pollut Bull ; 196: 115605, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844482

RESUMEN

Queensland loggerhead turtle nest numbers at Mon Repos (MR) indicate population recovery that doesn't occur at Wreck Island (WI). Previous research illustrated that MR and WI turtles forage in different locations, potentially indicating risks differences. Blood, scute, and egg were collected from turtles nesting at MR and WI, with known foraging sites (from concurrent studies). Trace element and organic contaminants were assessed via acid digestion and in vitro cytotoxicity bioassays, respectively. WI turtles had significantly higher scute uranium and blood molybdenum compared to MR turtles, and arsenic was higher in WI turtles foraging north and MR turtles foraging south. Egg and blood titanium, manganese, cadmium, barium, lead, and molybdenum, and scute and egg selenium and mercury significantly correlated. Blood (75 %) extracts produced significant toxicity in vitro in turtle fibroblast cells. In conclusion, reducing chemical exposure at higher risk foraging sites would likely benefit sea turtles and their offspring.


Asunto(s)
Selenio , Oligoelementos , Tortugas , Animales , Molibdeno , Queensland , Comportamiento de Nidificación
10.
Sci Total Environ ; 817: 152848, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007578

RESUMEN

Port Curtis, a major shipping port, has undergone significant expansion in the last decade, with plans for further development into the future. These activities may result in an increase of contaminant concentrations, threatening local wildlife including sea turtles. This study used a species-specific in vitro bioassay to examine spatial and temporal differences in exposure to, and effects of, organic contaminants in green sea turtles foraging in Port Curtis. Blood was collected from 134 green sea turtles (Chelonia mydas) from five locations in the port over four years. Organic contaminants were extracted from blood, and the cytotoxicity of the extracts to primary green sea turtle cells was assessed. Results indicated spatially similar chemical contamination throughout Port Curtis, at levels significant to sea turtle health, and with signs that chemical contamination may be increasing over time. These results can provide valuable information on the health of green turtles as further development occurs.


Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad
11.
J Exp Zool A Ecol Integr Physiol ; 337(5): 516-526, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35189044

RESUMEN

Development rate of ectothermic animals varies with temperature. Here we use data derived from laboratory constant temperature incubation experiments to formulate development rate models that can be used to model embryonic development rate in sea turtle nests. We then use a novel method for detecting the time of hatching to measure the in situ incubation period of sea turtle clutches to test the accuracy of our models in predicting the incubation period from nest temperature traces. We found that all our models overestimated the incubation period. We hypothesize three possible explanations which are not mutually exclusive for the mismatch between our modeling and empirically measured in situ incubation period: (1) a difference in the way the incubation period is calculated in laboratory data and in our field nests, (2) inaccuracies in the assumptions made by our models at high incubation temperatures where there is no empirical laboratory data, and (3) a tendency for development rate in laboratory experiments to be progressively slower as temperature decreases compared with in situ incubation.


Asunto(s)
Tortugas , Animales , Desarrollo Embrionario , Calor , Temperatura , Tortugas/fisiología
12.
PLoS One ; 17(7): e0271048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857751

RESUMEN

To address a major knowledge gap for flatback sea turtles (Natator depressus), a species endemic to Australia and considered 'Data Deficient' for IUCN Red List assessment, we present the first-ever skeletochronology-derived age and growth rate estimates for this species. Using a rare collection of bone samples gathered from across northern Australia, we applied skeletochronology and characterized the length-at-age relationship, established baseline growth rates from the hatchling to adult life stages, and produced empirical estimates of age-at- and size-at-sexual-maturation (ASM, SSM). We analyzed humeri from 74 flatback sea turtles ranging in body size from 6.0-96.0 cm curved carapace length (CCL), and recovered from Western Australia (n = 48), Eastern Australia (n = 13), central Australia (n = 8; Northern Territory n = 3, the Gulf of Carpentaria n = 5), and unknown locations (n = 5). We identified the onset of sexual maturity for 29 turtles, based on rapprochement growth patterns in the bones. Estimates for ASM ranged from 12.0 to 23.0 years (mean: 16.3 ± 0.53 SE), SSM ranged from 76.1 to 94.0 cm CCL (mean: 84.9 ± 0.90 SE), and maximum observed reproductive longevity was 31 years for a 45-year old male flatback. Growth was modeled as a smoothing spline fit to the size-at-age relationship and at the mean SSM (84.9 cm CCL) corresponded with a spline-predicted maturity age of 18 years (95% CI: 16 to 24), while mean nesting sizes reported in the literature (86.4 to 94 cm CCL) corresponded to estimated ages of 24+ years. A bootstrapped von Bertalanffy growth model was also applied and showed consistencies with the spline curve, yielding an estimated upper size limit, Linf, at 89.2 ± 0.04 cm (95% CI: 85.5 to 95.9 cm) with the intrinsic growth rate parameter, k, at 0.185 ± 0.0004 (0.16 to 0.22); at the same mean SSM (84.9 cm CCL) the estimated ASM was 16.3 ± 0.05 years (95% CI: 12.8 to 27.7 years). Lastly, four of the samples analyzed were collected from deceased adult females that had previous sizes known from on-going mark/recapture studies at nesting sites in Western Australia. The paired CCL data (measured at nesting and back-calculated) did not significantly differ (p = 0.875). This first skeletochronology study for flatback sea turtles generates valuable empirical estimates for ongoing conservation and management efforts.


Asunto(s)
Tortugas , Factores de Edad , Exoesqueleto , Animales , Femenino , Masculino , Northern Territory , Reproducción
13.
J Exp Biol ; 214(Pt 23): 3972-6, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22071188

RESUMEN

Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.


Asunto(s)
Conducta Animal/fisiología , Actividad Motora/fisiología , Natación/fisiología , Tortugas/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Océanos y Mares , Factores de Tiempo
14.
Dis Aquat Organ ; 95(1): 43-8, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21797034

RESUMEN

Biochemical and hematological reference intervals have not previously been reported for Emydura macquarii krefftii. In 2009, 56 E. m. krefftii were captured by hand from the Burnett Catchment, clinically assessed to determine health status and blood sampled. Reference intervals were calculated from the 35 clinically healthy turtles using techniques established in other chelonid species. Aberrant blood results were identified from the 21 clinically unhealthy turtles. Low numbers of observed cases of creatine kinase, glucose, magnesium, phosphorus and uric acid outside of the blood biochemistry reference interval were recorded, as were high numbers of observed cases of estimated eosinophils, thrombocytes and total leukocyte counts outside of the hematological reference interval. Lesions of the shell and plastron (shell rot) were observed in 38% (21/56) of the examined healthy and unhealthy turtles. Microbiological assessment of a subsample (n=7) of these lesions grew Aeromonas veronii 100% (7/7), Aeromonas hydrophila 29% (2/7) and Acinetobacter baumannii 14% (1/7). Of the examined turtles, 13% (7/56) had evidence of opacity of the lens or anterior chamber of the eye and 70% (39/56) had erythema of the neck, axillary and inguinal soft tissues. Not all observed cases of erythema were associated with clinical ill-health. The anomalous blood results and clinical findings identified in this study suggest disease processes which may have resulted from causative agents in the surrounding environment.


Asunto(s)
Análisis Químico de la Sangre/veterinaria , Tortugas/sangre , Animales , Australia , Femenino , Masculino , Valores de Referencia , Ríos
15.
J Exp Zool A Ecol Integr Physiol ; 335(8): 649-658, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313387

RESUMEN

All sea turtles exhibit temperature-dependent sex-determination, where warmer temperatures produce mostly females and cooler temperatures produce mostly males. As global temperatures continue to rise, sea turtle sex-ratios are expected to become increasingly female-biased, threatening the long-term viability of many populations. Nest temperatures are dependent on sand temperature, and heavy rainfall events reduce sand temperatures for a brief period. However, it is unknown whether these short-term temperature drops are large and long enough to produce male hatchlings. To discover if short-term temperature drops within the sex-determining period can lead to male hatchling production, we exposed green and loggerhead turtle eggs to short-term temperature drops conducted in constant temperature rooms. We dropped incubation temperature at four different times during the sex-determining period for a duration of either 3 or 7 days to mimic short-term drops in temperature caused by heavy rainfall in nature. Some male hatchlings were produced when exposed to temperature drops for as little as 3 days, but the majority of male production occurred when eggs were exposed to 7 days of lowered temperature. More male hatchlings were produced when the temperature drop occurred during the middle of the sex-determining period in green turtles, and the beginning and end of the sex-determining period in loggerhead turtles. Inter-clutch variation was evident in the proportion of male hatchlings produced, indicating that maternal and or genetic factors influence male hatchling production. Our findings have management implications for the long-term preservation of sea turtles on beaches that exhibit strongly female-biased hatchling sex-ratios.


Asunto(s)
Tortugas , Animales , Femenino , Masculino , Razón de Masculinidad , Temperatura
16.
Chemosphere ; 274: 129752, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33529958

RESUMEN

Sea turtle populations foraging in coastal areas adjacent to human activity can be exposed to numerous chemical contaminants for long periods of time. For trace elements, well-developed, sensitive and inexpensive analytical techniques remain the most effective method for assessing exposure in sea turtles. However, there are many thousands more organic contaminants present in sea turtles, often at low levels as complex mixtures. Recently developed species-specific in vitro bioassays provide an effective means to identify the presence, and effect of, organic chemicals in sea turtles. This study used a combination of chemical analysis and effects-based bioassays to provide complementary information on chemical exposure and effects for three green turtle foraging populations (Chelonia mydas) in southern Queensland, Australia. Blood was collected from foraging sub-adult green turtles captured in Moreton Bay, Hervey Bay, and Port Curtis. Twenty-six trace elements were measured in whole blood using ICP-MS. Organic contaminants in turtle blood were extracted via QuEChERS and applied to primary green turtle skin fibroblast cell in vitro assays for two toxicity endpoints; cytotoxicity and oxidative stress. The trace element analysis and bioassay results indicated site-specific differences between foraging populations. In particular, turtles from Moreton Bay, a heavily populated coastal embayment, had pronounced cytotoxicity and oxidative stress from organic blood extracts, and elevated concentrations of Cs, Ag, and Zn relative to the other sites. Incorporating traditional chemical analysis with novel effects-based methods can provide a comprehensive assessment of chemical risk in sea turtle populations, contributing to the conservation and management of these threatened species.


Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Australia , Técnicas In Vitro , Queensland , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
PLoS One ; 15(12): e0233580, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264278

RESUMEN

Sea turtle embryos at high-density nesting beaches experience relative high rates of early stage embryo death. One hypothesis to explain this high mortality rate is that there is an increased probability that newly constructed nests are located close to maturing clutches whose metabolising embryos cause low oxygen levels, high carbon dioxide levels, and high temperatures. Although these altered environmental conditions are well tolerated by mature embryos, early stage embryos, i.e. embryos in eggs that have only been incubating for less than a week, may not be as tolerant leading to an increase in their mortality. To test this hypothesis, we incubated newly laid sea turtle eggs over a range of temperatures in different combinations of oxygen and carbon dioxide concentrations and assessed embryo development and death rates. We found that gas mixtures of decreased oxygen and increased carbon dioxide, similar to those found in natural sea turtle nests containing mature embryos, slowed embryonic development but did not influence the mortality rate of early stage embryos. We found incubation temperature had no effect on early embryo mortality but growth rate at 27°C and 34°C was slower than at 30°C and 33°C. Our findings indicate that low oxygen and high carbon dioxide partial pressures are not the cause of the high early stage embryo mortality observed at high-density sea turtle nesting beaches, but there is evidence suggesting high incubation temperatures, particularly above 34°C are harmful. Any management strategies that can increase the spacing between nests or other strategies such as shading or irrigation that reduce sand temperature are likely to increase hatching success at high-density nesting beaches.


Asunto(s)
Dióxido de Carbono/farmacología , Oxígeno/farmacología , Temperatura , Tortugas/embriología , Animales , Playas , Desarrollo Embrionario/efectos de los fármacos , Incubadoras , Presión Parcial , Queensland , Especificidad de la Especie
18.
Conserv Biol ; 23(1): 72-80, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18798862

RESUMEN

Relocation of eggs is a common strategy for conservation of declining reptilian populations around the world. If individuals exhibit consistency in their nest-site selection and if nest-site selection is a heritable trait, relocating eggs deposited in vulnerable locations may impose artificial selection that would maintain traits favoring unsuccessful nest-site selection. Conversely, if most individuals scatter their nesting effort and individuals that consistently select unsuccessful nest sites are uncommon, then artificial selection would be less of a concern. During the 2005 nesting season of loggerhead turtles (Caretta caretta) at Mon Repos beach, Queensland, Australia, we measured the perpendicular distance from the original nest site to a stationary dune baseline for in situ (unrelocated) and relocated clutches of eggs. We observed the fate of in situ clutches and predicted what would have been the fate of relocated clutches if they had not been moved by mapping tidal inundation and storm erosion lines. In 2005 turtles deposited an average of 3.84 nests and did not consistently select nest sites at particular distances from the stationary dune baseline. Selection of unsuccessful nest sites was distributed across the nesting population; 80.3% of the turtles selected at least one unsuccessful nest site and when previous breeding seasons were included, 97% selected at least one unsuccessful nest site. Females with nesting experience selected more successful nest sites than females with little or no experience. Relocating eggs vulnerable to tidal inundation and erosion saves the progeny from a large percentage of the population and the progeny from individuals who may in subsequent years nest successfully. Our results suggest that doomed-egg relocation does not substantially distort the gene pool in the eastern Australian loggerhead stock and should not be abandoned as a strategy for the conservation of marine turtle populations.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Comportamiento de Nidificación/fisiología , Óvulo/fisiología , Tortugas/fisiología , Animales , Demografía , Observación , Queensland , Análisis de Supervivencia
19.
Adv Mar Biol ; 56: 151-211, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19895975

RESUMEN

Marine turtles are generally viewed as vulnerable to climate change because of the role that temperature plays in the sex determination of embryos, their long life history, long age-to-maturity and their highly migratory nature. Extant species of marine turtles probably arose during the mid-late Jurassic period (180-150 Mya) so have survived past shifts in climate, including glacial periods and warm events and therefore have some capacity for adaptation. The present-day rates of increase of atmospheric greenhouse gas concentrations, and associated temperature changes, are very rapid; the capacity of marine turtles to adapt to this rapid change may be compromised by their relatively long generation times. We consider the evidence and likely consequences of present-day trends of climate change on marine turtles. Impacts are likely to be complex and may be positive as well as negative. For example, rising sea levels and increased storm intensity will negatively impact turtle nesting beaches; however, extreme storms can also lead to coastal accretion. Alteration of wind patterns and ocean currents will have implications for juveniles and adults in the open ocean. Warming temperatures are likely to impact directly all turtle life stages, such as the sex determination of embryos in the nest and growth rates. Warming of 2 degrees C could potentially result in a large shift in sex ratios towards females at many rookeries, although some populations may be resilient to warming if female biases remain within levels where population success is not impaired. Indirectly, climate change is likely to impact turtles through changes in food availability. The highly migratory nature of turtles and their ability to move considerable distances in short periods of time should increase their resilience to climate change. However, any such resilience of marine turtles to climate change is likely to be severely compromised by other anthropogenic influences. Development of coastlines may threaten nesting beaches and reproductive success, and pollution and eutrophication is threatening important coastal foraging habitats for turtles worldwide. Exploitation and bycatch in other fisheries has seriously reduced marine turtle populations. The synergistic effects of other human-induced stressors may seriously reduce the capacity of some turtle populations to adapt to the current rates of climate change. Conservation recommendations to increase the capacity of marine turtle populations to adapt to climate change include increasing population resilience, for example by the use of turtle exclusion devices in fisheries, protection of nesting beaches from the viewpoints of both conservation and coastal management, and increased international conservation efforts to protect turtles in regions where there is high unregulated or illegal fisheries (including turtle harvesting). Increasing research efforts on the critical knowledge gaps of processes influencing population numbers, such as identifying ocean foraging hotspots or the processes that underlie the initiation of nesting migrations and selection of breeding areas, will inform adaptive management in a changing climate.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Tortugas/fisiología , Migración Animal , Animales , Ecosistema , Femenino , Comportamiento de Nidificación/fisiología , Océanos y Mares , Temperatura , Tiempo (Meteorología)
20.
J Vet Diagn Invest ; 21(6): 733-59, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19901275

RESUMEN

Over the past few decades, there have been increasing numbers of reports of diseases in marine turtles. Furthermore, in recent years, there have been documented instances of apparently new diseases emerging in these species of which the etiology and/or pathogenesis remain unknown. These instances i) raise concern for the survival of marine turtles, and ii) question the health and stability of the benthic marine environments in which turtles live. Knowledge of common disease processes and pathologic changes in lesions, along with a standardized approach to postmortem and sample collection are required to document and understand the host-agent-environment interactions in marine turtle health. This review combines, for the first time, a standardized approach to the postmortem of marine turtles for veterinary clinicians, with a concurrent descriptive review of the gross and microscopic pathologic changes in lesions commonly seen.


Asunto(s)
Tortugas , Enfermedades de los Animales/clasificación , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/mortalidad , Enfermedades de los Animales/patología , Animales , Autopsia/métodos , Autopsia/veterinaria , Diagnóstico , Ecosistema , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA