Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; 19(29): e2208174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37026668

RESUMEN

Ultrathin 2D organic nanosheets (2DONs) with high mobility have received tremendous attention due to thickness of few molecular layers. However, ultrathin 2DONs with high luminescence efficiency and flexibility simultaneously are rarely reported. Here, the ultrathin 2DONs (thickness: 19 nm) through the modulation of tighter molecular packing (distance: ≈3.31 Å) achievable from the incorporation of methoxyl and dipenylamine (DPA) groups into 3D spirofluorenexanthene (SFX) building blocks is successfully prepared. Even with closer molecular stacking, ultrathin 2DONs still enable the suppression of aggregation quenching to exhibit higher quantum yields of blue emission (ΦF  = 48%) than that on amorphous film (ΦF  = 20%), and show amplified spontaneous emission (ASE) with a mediate threshold (332 mW cm-2 ). Further, through drop-casting method, the ultrathin 2DONs are self-organized into large-scale flexible 2DONs films (1.5 × 1.5 cm) with the low hardness (H: 0.008 Gpa) and low Young's modulus (Er : 0.63 Gpa). Impressively, the large-scale 2DONs film can realize electroluminescence performances with a maximum luminance (445 cd m-2 ) and low turn on voltage (3.7 V). These ultrathin 2DONs provide a new avenue for the realization of flexible electrically pumping lasers and intelligent quantum tunneling systems.

2.
Angew Chem Int Ed Engl ; 62(22): e202303335, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36964955

RESUMEN

Two wide-band gap U-shaped polycyclic aromatic hydrocarbons with/without boron and nitrogen (BN-) doping (BN-1 and C-1) were synthesized to tune the electronic features to suit the performance requirements for organic field-effect transistor memory (OFET-NVM). The chemical structures were characterized by scanning tunneling microscopy and single-crystal diffraction. Owing to the electron-donor effect of N and the high electron affinity of B, the BN-1-based OFET-NVM displays large ambipolar memory windows and an enhanced charge storage density compared to C-1 and most reported small molecules. A novel supramolecular system formed from BN-1 and PMMA contributes to fabricating uniform films with homogeneous microstructures, which serve as a two-in-one tunnelling dielectric and charge-trapping layer to realize long-term charge retention and reliable endurance. Our results demonstrate that both BN doping and supramolecular engineering are crucial for the charge trapping of OFET-NVM.

3.
Org Biomol Chem ; 19(47): 10408-10416, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812821

RESUMEN

Regular or well-defined nanogrids with atomically precise extension sites offer an opportunity for covalent nano-architectures as well as frameworks. Previously, we discovered organic nanogrids based on the 2,7-linkage of fluorene via Friedel-Crafts gridization. However, the regularity of nanogrids is not always based on the actual molecular backbone, which leads to ineffective linkage for the more regular complex nanogrids such as nano-windows. Herein, we report the introduction of spirobifluorene, which has more orthogonal shapes, to fix the backbone of nanogridons with regards to the diarylfluorenes. The diamond-type nanogridons (DGs) obtained as a result have the potential feature of cross extension, which is different from their ladder-type counterparts, although they both have four well-defined extension sites. In order to screen efficient monogridon modules, we designed two types of DGs (spiro[fluorene-9,8'-indeno[2,1-b]thiophene] (SFIT)-based DGs-1 and spirobifluorene-based DGs-2) and compared their synthetic routes. The results show that the Friedel-Crafts (F-C) gridization of the A1B1 synthon (A1B1 mode) offers DGs-1 in 44-50% yields, while the F-C gridization of A2 + B2 synthons (A2 + B2 mode) is more efficient and gives DGs-2 in 64% yield. Furthermore, unlike in the A1B1 mode, the dehydroxylated byproduct and linear polymers were not observed in the A2 + B2 mode.

4.
J Org Chem ; 84(17): 10701-10709, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31364358

RESUMEN

Superelectrophilic-initiated direct C-H functionalization of thiophenes at the ß-position was developed. A series of trans-stereospecific [2,1-a]-IF-thiophene-fused cyclic compounds (4) with saddle-shaped structure were prepared in 17-30% yields through a one-pot superelectrophilic Friedel-Crafts reaction of dihydroindenofluorene with thiophene derivatives. From the crystal packing analyses of 4a, its skeleton shows both strong intermolecular π-π stacking and C-H···π stacking. Furthermore, the ring-dependent photophysical properties of 4 were confirmed by UV-vis absorption and photoluminescence spectroscopy as well as through the study of their fluorescence quantum yield.

5.
Nano Lett ; 18(7): 4156-4162, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29874453

RESUMEN

The mechanisms of chemical reactions, including the transformation pathways of the electronic and geometric structures of molecules, are crucial for comprehending the essence and developing new chemistry. However, it is extremely difficult to realize at the single-molecule level. Here, we report a single-molecule approach capable of electrically probing stochastic fluctuations under equilibrium conditions and elucidating time trajectories of single species in non-equilibrated systems. Through molecular engineering, a single molecular wire containing a functional center of 9-phenyl-9-fluorenol was covalently wired into nanogapped graphene electrodes to form stable single-molecule junctions. Both experimental and theoretical studies consistently demonstrate and interpret the direct measurement of the formation dynamics of individual carbocation intermediates with a strong solvent dependence in a nucleophilic-substitution reaction. We also show the kinetic process of competitive transitions between acetate and bromide species, which is inevitable through a carbocation intermediate, confirming the classical mechanism. This unique method creates plenty of opportunities for carrying out single-molecule dynamics or biophysics investigations in broad fields beyond reaction chemistry through molecular design and engineering.

6.
Org Biomol Chem ; 13(46): 11362-8, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26440765

RESUMEN

Under very mild conditions, functionalized benzoxaborole derivatives were prepared in good to excellent yields via a palladium-catalyzed Miyaura borylation reaction of readily available unprotected o-bromobenzylalcohols, and bis(pinacolato)diboron (B2pin2) without the assistance of an acid. Blue-light-emitting materials based on spiro benzoxaborole building blocks have been obtained with potential applications in organic electronics and biomedicine.

7.
Nat Commun ; 15(1): 5438, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937440

RESUMEN

Gridization is an emerging molecular integration technology that enables the creation of multifunctional organic semiconductors through precise linkages. While Friedel-Crafts gridization of fluorenols is potent, direct linkage among fluorene molecules poses a challenge. Herein, we report an achiral Pd-PPh3-cataylized diastereoselective (>99:1 d.r.) gridization based on the C-H-activation of fluorene to give dimeric and trimeric windmill-type nanogrids (DWGs and TWGs). These non-conjugated stereo-nanogrids showcase intramolecular multiple H…H interactions with a low field shift to 8.51 ppm and circularly polarized luminescence with high luminescent dissymmetry factors (|gPL | = 0.012). Significantly, the nondoped organic light-emitting diodes (OLEDs) utilizing cis-trans-TWG1 emitter present an ultraviolet electroluminescent peak at ~386 nm (CIE: 0.17, 0.04) with a maximum external quantum efficiency of 4.17%, marking the highest record among nondoped ultraviolet OLEDs based on hydrocarbon compounds and the pioneering ultraviolet OLEDs based on macrocycles. These nanohydrocarbon offer potential nanoscafflolds for ultraviolet light-emitting optoelectronic applications.

8.
Chem Asian J ; 18(18): e202300480, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370258

RESUMEN

Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.

9.
Research (Wash D C) ; 6: 0027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040485

RESUMEN

In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Φ = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors Q ≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics.

10.
Research (Wash D C) ; 2022: 9820585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35098138

RESUMEN

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (l p ≈ 41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k = 8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94 × 10-3 cm2 V-1 s-1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.

11.
Adv Mater ; 34(11): e2109399, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35023217

RESUMEN

Organic semiconducting emitters integrated with butterfly-mimetic photonic crystals (PhCs) are fascinating for dramatic advantages over light outcoupling efficiency and multifunctional strain sensors, as well as the key step toward electrically pumped lasers. Herein, an unprecedentedly direct mesoscale self-assembly into 1D PhCs is reported through a covalently gridization-driven approach of wide-bandgap conjugated polymers. A simple solvent-casting procedure allows for in situ self-assembly of the state-of-the-art conjugated nanopolymer, poly{[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid}-co-{[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid} (PODPFG), into well-defined multilayer architectures with an excellent toughness (30-40 J m-3 ). This ordered meso-architecture shows a typical Bragg-Snell diffraction behavior to testify the PhC nature, along with a high effective refractive index (1.80-1.88) and optical transmittance (85-87%). The PhC films also exhibit an angle-dependent blue/green photoluminescence switching, an electroluminescence efficiency enhancement by 150-250%, and an amplified spontaneous emission enhancement with ultralow waveguide loss coefficient (2.60 cm-1 ). Gridization of organic semiconductors offers promising opportunities for cross-scale morphology-directed molecular design in multifunctional organic mechatronics and intelligences.

12.
J Food Sci Technol ; 48(1): 1-13, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23572711

RESUMEN

Vacuum packaged beef strip-loins (fresh and aged) were repackaged on polystyrene trays and over-wrapped with food grade cling film for the storage study. Several volatile compounds such as 3-methyl-1-butanol, 2,3-butanedione, 2-butanone, 3-hydroxy-2-butanone, acetic acid and a few hydrocarbons were detected in the headspace of these tray packaged fresh and aged beef strip loins both in the control and Salmonella typhimurium inoculated samples, in varying concentrations. These compounds were identified using manual headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography/mass spectrometry (GC-MS) over a storage period of 4 days and samples were incubated at 20°C. No naturally occurring Salmonella was present in the control samples. Hexanal (r = 0.99), carbon dioxide (r = 0.98), 3-hydroxy-2-butanone (r = 0.93) and 2-methyl propane (r = 0.95) showed positive correlations with Salmonella population for fresh beef samples. In aged beef samples, 3-methyl-1-butanol (r = 0.99), 3-hydroxy-2-butanone (r = 0.98), carbon dioxide (r = 0.98) and acetic acid (r = 0.86) showed similar trends. In fresh beef samples, F values were significant at p < 0.05 for 3-hydroxy-2-butanone and for carbon dioxide with storage time for fresh beef samples; they were significant for 3-hydroxy-2-butanone, acetic acid and carbon dioxide for aged beef samples.

13.
Front Chem ; 9: 717892, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540799

RESUMEN

Bulky conjugated molecules with high stability are the prerequisite for the overall improvement of performance in wide-bandgap semiconductors. Herein, a chiral difluorenol, 2,2'-(9,9'-spirobi[fluorene]-2,2'-diyl)bis(9-(4-(octyloxy)phenyl)-9H-fluoren-9-ol) (DOHSBF), is set as a desirable model to reveal the stereoisomeric effects of wide-bandgap molecules toward controlling photophysical behavior and improving thermal and optical stability. Three diastereomers are obtained and elucidated by NMR spectra. Interestingly, the effect of modifying the stereo-centers is not observed on optical properties in solutions, pristine films, or post-treated film states. All three diastereomers as well as the mixture exhibit excellent spectral stability without undesirable green emission. Therefore, this stereoisomer-independent blue-emitting difluorenol will be a promising candidate for next-generation wide-bandgap semiconductors that would have extensive application in organic photonics.

14.
Nat Commun ; 11(1): 1756, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273512

RESUMEN

The gridarenes, with well-defined edges and vertices, represent versatile nanoscale building blocks for the installation of frameworks and architectures but suffer from difficulty in stereoselective control during their synthesis. Here we report a diastereoselective gridization of superelectrophilic diazafluorene-containing substrates (AmBn) with crescent shapes into Drawing Hands grids (DHGs). The meso-selectivity reaches 75.6% diastereomeric excess (de) during the gridization of A1B1-type substrates and maintains ~80% de during the polygridization of A2B2-type monomers. Such stereocontrol originates from the centrosymmetric molecular packing of two charge-delocalized superelectrophiles with synergistically π-π stacking attractions and coulombic repulsions. As meso-stereoregular structures show 20∼30 nm in length, the rigid ring/chain-alternating polygrids have a Mark-Houwink exponent of 1.651 and a molecular weight (M) dependence of the hydrodynamic radius Rh ∼ M1.13. Via the simulation of chain collapse, meso-configured polygridarenes still adopt rod-like conformations that facilitate the high rigidity of organic nanopolymers, distinguished from toroid backbones of rac-type polygrids.

15.
Nanoscale ; 11(12): 5158-5162, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30865748

RESUMEN

Three pyrene-based spirocyclic aromatic hydrocarbons (Py-SAHs) were prepared to clarify the roles of molecular segments in regulating the morphologies and photophysical properties of organic microcrystals. Due to the different supramolecular steric hindrance (SSH) effect between bulky groups and pyrene rings, distinct nanocrystal morphologies with unique photoluminescence properties were realized.

16.
Org Lett ; 18(24): 6220-6223, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978634

RESUMEN

Superelectrophilic-initiated carbon cationic relay reactions of diazafluorenones with phenols were developed to provide strategically novel and atom-economic access to spirodiazafluorenes via tandem Friedel-Crafts reaction, nucleophilic addition, and intramolecular cyclization sequences. A range of spirodiazafluorenes that are difficult to synthesize with traditional protocols has been constructed successfully in middle to high yields using this method.

17.
Int J Syst Evol Microbiol ; 60(Pt 6): 1307-1310, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19667366

RESUMEN

A Gram-stain-positive, oxidase- and catalase-positive, non-motile, non-spore-forming, halotolerant, coccoid bacterium, designated strain NY-2(T), was isolated from a seaside soil sample from Shandong Province, China. Strain NY-2(T) was able to grow in the presence of 0-23 % (w/v) NaCl and at pH 4.5-10.0 and 5-42 degrees C; optimum growth was observed with 3-8 % (w/v) total salts and at pH 6.5-8.0 and 28-37 degrees C. Chemotaxonomic analyses, including fatty acid profiles, menaquinones and polar lipids, supported the affiliation of strain NY-2(T) to the genus Jeotgalicoccus. The predominant menaquinone of strain NY-2(T) was menaquinone 7 (MK-7) (100 %) and the major cellular fatty acids were iso-C(15 : 0) (49.0 %) and anteiso-C(15 : 0) (19.6 %). Cellular polar lipids were phosphatidylglycerol, diphosphatidylglycerol and several unidentified phospholipids. The DNA G+C content of strain NY-2(T) was 36.8 mol%. Based on 16S rRNA gene sequence analysis, strain NY-2(T) formed a coherent cluster with Jeotgalicoccus marinus JSM 076033(T), Jeotgalicoccus halotolerans YKJ-101(T) and Jeotgalicoccus psychrophilus YKJ-115(T). Phylogenetic analysis, DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic data indicated that strain NY-2(T) (=CCTCC AB 208288(T) =JCM 15687(T)) should be classified as the type strain of a novel species of the genus Jeotgalicoccus, for which the name Jeotgalicoccus huakuii sp. nov. is proposed.


Asunto(s)
Microbiología del Suelo , Staphylococcaceae/clasificación , Composición de Base , China , ADN Bacteriano/química , ADN Bacteriano/genética , Ácidos Grasos/análisis , Lípidos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Agua de Mar , Staphylococcaceae/genética , Staphylococcaceae/aislamiento & purificación , Staphylococcaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA