Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011733, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943805

RESUMEN

Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.


Asunto(s)
Plantas , Esfingolípidos , Humanos , Animales , Esfingolípidos/química , Esfingolípidos/metabolismo , Plantas/metabolismo , Hongos/metabolismo , Transducción de Señal/fisiología , Membrana Celular/metabolismo , Mamíferos
2.
Cell Commun Signal ; 22(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195499

RESUMEN

The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.


Asunto(s)
Ascomicetos , Ciclo Celular , Autofagia , Pared Celular
3.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594767

RESUMEN

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Asunto(s)
Ascomicetos , Virulencia , Proteínas , Ubiquitinación , Autofagia
4.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958759

RESUMEN

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Asunto(s)
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crecimiento & desarrollo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polisacáridos/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/genética
5.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542408

RESUMEN

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiología , Citoesqueleto/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica
6.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446367

RESUMEN

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Asunto(s)
Nicotiana , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lípidos
7.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298247

RESUMEN

Calcineurin, a key regulator of the calcium signaling pathway, is involved in calcium signal transduction and calcium ion homeostasis. Magnaporthe oryzae is a devastating filamentous phytopathogenic fungus in rice, yet little is known about the function of the calcium signaling system. Here, we identified a novel calcineurin regulatory-subunit-binding protein, MoCbp7, which is highly conserved in filamentous fungi and was found to localize in the cytoplasm. Phenotypic analysis of the MoCBP7 gene deletion mutant (ΔMocbp7) showed that MoCbp7 influenced the growth, conidiation, appressorium formation, invasive growth, and virulence of M. oryzae. Some calcium-signaling-related genes, such as YVC1, VCX1, and RCN1, are expressed in a calcineurin/MoCbp7-dependent manner. Furthermore, MoCbp7 synergizes with calcineurin to regulate endoplasmic reticulum homeostasis. Our research indicated that M. oryzae may have evolved a new calcium signaling regulatory network to adapt to its environment compared to the fungal model organism Saccharomyces cerevisiae.


Asunto(s)
Magnaporthe , Oryza , Virulencia/genética , Calcineurina/genética , Calcineurina/metabolismo , Proteínas Portadoras/metabolismo , Señalización del Calcio , Calcio/metabolismo , Magnaporthe/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas
8.
Environ Microbiol ; 24(3): 1653-1671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35229430

RESUMEN

The development and pathogenicity of the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, require it to perceive external environmental signals. Opy2, an overproduction-induced pheromone-resistant protein 2, is a crucial protein for sensing external signals in Saccharomyces cerevisiae. However, the biological functions of the homologue of Opy2 in M. oryzae are unclear. In this study, we identified that MoOPY2 is involved in fungal development, pathogenicity, and autophagy in M. oryzae. Deletion of MoOPY2 resulted in pleiotropic defects in hyphal growth, conidiation, germ tube extension, appressorium formation, appressorium turgor generation, and invasive growth, therefore leading to attenuated pathogenicity. Furthermore, MoOpy2 participates in the Osm1 MAPK pathway and the Mps1 MAPK pathway by interacting with the adaptor protein Mst50. The interaction sites of Mst50 and MoOpy2 colocalized with the autophagic marker protein MoAtg8 in the preautophagosomal structure sites (PAS). Notably, the ΔMoopy2 mutant caused cumulative MoAtg8 lipidation and rapid GFP-MoAtg8 degradation in response to nitrogen starvation, showing that MoOpy2 is involved in the negative regulation of autophagy activity. Taken together, our study revealed that MoOpy2 of M. oryzae plays an essential role in the orchestration of fungal development, appressorium penetration, autophagy and pathogenesis.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Autofagia/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Magnaporthe/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia/genética
9.
Environ Microbiol ; 24(3): 1076-1092, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472190

RESUMEN

Magnaporthe oryzae is an important plant pathogen that causes rice blast. Hse1 and Vps27 are components of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway and biogenesis. To date, the biological functions of ESCRT-0 in M. oryzae have not been determined. In this study, we identified and characterized Hse1 and Vps27 in M. oryzae. Disruption of MoHse1 and MoVps27 caused pleiotropic defects in growth, conidiation, sexual development and pathogenicity, thereby resulting in loss of virulence in rice and barley leaves. Disruption of MoHse1 and MoVps27 triggered increased lipidation of MoAtg8 and degradation of GFP-MoAtg8, indicating that ESCRT-0 is involved in the regulation of autophagy. ESCRT-0 was determined to interact with coat protein complex II (COPII), a regulator functioning in homeostasis of the endoplasmic reticulum (ER homeostasis), and disruption of MoHse1 and MoVps27 also blocked activation of the unfolded protein response (UPR) and autophagy of the endoplasmic reticulum (ER-phagy). Overall, our results indicate that ESCRT-0 plays critical roles in regulating fungal development, virulence, autophagy and ER-phagy in M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Autofagia/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia
10.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897680

RESUMEN

Magnaporthe oryzae is an important pathogen that causes a devastating disease in rice. It has been reported that the dual-specificity LAMMER kinase is conserved from yeast to animal species and has a variety of functions. However, the functions of the LAMMER kinase have not been reported in M. oryzae. In this study, we identified the unique LAMMER kinase MoKns1 and analyzed its function in M. oryzae. We found that in a MoKNS1 deletion mutant, growth and conidiation were primarily decreased, and pathogenicity was almost completely lost. Furthermore, our results found that MoKns1 is involved in autophagy. The ΔMokns1 mutant was sensitive to rapamycin, and MoKns1 interacted with the autophagy-related protein MoAtg18. Compared with the wild-type strain 70-15, autophagy was significantly enhanced in the ΔMokns1 mutant. In addition, we also found that MoKns1 regulated DNA damage stress pathways, and the ΔMokns1 mutant was more sensitive to hydroxyurea (HU) and methyl methanesulfonate (MMS) compared to the wild-type strain 70-15. The expression of genes related to DNA damage stress pathways in the ΔMokns1 mutant was significantly different from that in the wild-type strain. Our results demonstrate that MoKns1 is an important pathogenic factor in M. oryzae involved in regulating autophagy and DNA damage response pathways, thus affecting virulence. This research on M. oryzae pathogenesis lays a foundation for the prevention and control of M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Oryza/metabolismo , Enfermedades de las Plantas , Esporas Fúngicas , Virulencia/genética
11.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563048

RESUMEN

Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi-plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.


Asunto(s)
Hongos , Plantas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas/microbiología , Factores de Virulencia
12.
Biotechnol Lett ; 43(10): 2045-2052, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34390483

RESUMEN

OBJECTIVE: To investigate the protoplast preparation and transformation system of endophytic fungus Falciphora oryzae. RESULTS: F. oryzae strain obtained higher protoplast yield and effective transformation when treated with enzyme digestion solution containing 0.9 M KCl solution and 10 mg mL-1 glucanase at 30 °C with shaking at 80 rpm for 2-3 h. When the protoplasts were plated on a regenerations-agar medium containing 1 M sucrose, the re-growth rate of protoplasts was the highest. We successfully acquired green fluorescent protein-expressing transformants by transforming the pKD6-GFP vector into protoplasts. Further, the GFP expression in fungal hyphae possessed good stability and intensity during symbiosis in rice roots. CONCLUSIONS: This study provided a protoplast transformation system of F. oryzae, creating opportunities for future genetic research in other endophytic fungi.


Asunto(s)
Ascomicetos , Endófitos , Protoplastos/metabolismo , Transfección/métodos , Ascomicetos/genética , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Proteínas Recombinantes de Fusión/genética , Simbiosis/genética
13.
Adv Exp Med Biol ; 1208: 99-114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260024

RESUMEN

Autophagy, a highly conserved metabolic process in eukaryotes, is a widespread degradation/recycling system. However, there are significant differences (as well as similarities) between autophagy in animals, plants, and microorganisms such as yeast. While the overall process of autophagy is similar between different organisms, the molecular mechanisms and the pathways regulating autophagy are different, which is manifested in the diversity and specificity of the genes involved. In general, the autophagy system is much more complicated in mammals than in yeast. In addition, there are some differences in the types of autophagy present in animals, plants, and microorganisms. For example, there is a unique type of selective autophagy called the cytoplasm-to-vacuole targeting (Cvt) pathway in yeast, and a special kind of autophagy, chloroplast autophagy, exists in plants. In conclusion, although autophagy is highly conserved in eukaryotes, there are still many differences between autophagy of animals, plants, and microorganisms.


Asunto(s)
Autofagia , Vacuolas , Animales , Citoplasma , Mamíferos/genética , Saccharomyces cerevisiae
14.
Curr Genet ; 66(4): 765-774, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32125494

RESUMEN

Pyricularia oryzae is the causal agent of blast disease on staple gramineous crops. Sulphur is an essential element for the biosynthesis of cysteine and methionine in fungi. Here, we targeted the P. oryzae PoMET3 encoding the enzyme ATP sulfurylase, and PoMET14 encoding the APS (adenosine-5'-phosphosulphate) kinase that are involved in sulfate assimilation and sulphur-containing amino acids biosynthesis. In P. oryzae, deletion of PoMET3 or PoMET14 separately results in defects of conidiophore formation, significant impairments in conidiation, methionine and cysteine auxotrophy, limited invasive hypha extension, and remarkably reduced virulence on rice and barley. Furthermore, the defects of the null mutants could be restored by supplementing with exogenous cysteine or methionine. Our study explored the biological functions of sulfur assimilation and sulphur-containing amino acids biosynthesis in P. oryzae.


Asunto(s)
Ascomicetos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato Adenililtransferasa/metabolismo , Ascomicetos/efectos de los fármacos , Cisteína/metabolismo , Cisteína/farmacología , Eliminación de Gen , Hordeum/microbiología , Hifa/patogenicidad , Hifa/fisiología , Metionina/metabolismo , Metionina/farmacología , Mutación , Oryza/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas , Sulfato Adenililtransferasa/genética , Virulencia
15.
Environ Microbiol ; 21(8): 3027-3045, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145534

RESUMEN

The Skp1-Cul1-F-box-protein (SCF) ubiquitin ligases are important parts of the ubiquitin system controlling many cellular biological processes in eukaryotes. However, the roles of SCF ubiquitin ligases remain unclear in phytopathogenic Magnaporthe oryzae. Here, we cloned 24 F-box proteins and confirmed that 17 proteins could interact with MoSkp1, showing their potential to participate in SCF complexes. To determine their functions, null mutants of 21 F-box-containing genes were created. Among them, the F-box proteins MoFwd1, MoCdc4 and MoFbx15 were found to be required for growth, development and full virulence. Fluorescent-microscopy observations demonstrated that both MoFbx15 and MoCdc4 were localized to the nucleus, compared with MoFwd1, which was distributed in the cytosol. MoCdc4 and MoFwd1 bound to MoSkp1 via the F-box domain, the deletion of which abrogated their function. Race tube and qRT-PCR assays confirmed that MoFwd1 was involved in circadian rhythm by regulating transcription and protein stability of the core circadian clock regulator MoFRQ. Moreover, MoFWD1 also orchestrates conidial germination by influencing conidial amino acids pools and oxidative stress release. Overall, our results indicate that SCF ubiquitin ligases play indispensable roles in development and pathogenicity in M. oryzae.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Proteínas Cullin/metabolismo , Proteínas F-Box/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Esporas Fúngicas/metabolismo , Virulencia
16.
Semin Cell Dev Biol ; 57: 128-137, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27072489

RESUMEN

Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi.


Asunto(s)
Autofagia , Hongos/citología , Hongos/patogenicidad , Plantas/microbiología , Biomarcadores/metabolismo , Hongos/ultraestructura , Enfermedades de las Plantas/microbiología , Plantas/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
17.
Environ Microbiol ; 20(4): 1516-1530, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468804

RESUMEN

Pyricularia oryzae is the causal pathogen of rice blast disease. Autophagy has been shown to play important roles in P. oryzae development and plant infection. The P. oryzae endosomal system is highly dynamic and has been shown to be associated with conidiogenesis and pathogenicity as well. To date, the crosstalk between autophagy and endocytosis has not been explored in P. oryzae. Here, we identified three P. oryzae VPS9 domain-containing proteins, PoVps9, PoMuk1 and PoVrl1. We found that PoVps9 and PoMuk1 are localized to vesicles and are each co-localized with PoVps21, a recognized marker of early endosomes. Deletion of PoVPS9 resulted in severe defects in endocytosis and autophagosome degradation and impaired the localization of PoVps21 to endosomes. Additionally, deletion of the PoMUK1 gene in the ΔPovps9 mutant background exhibited more severe defects in development, autophagy and endocytosis compared with the ΔPovps9 mutant. Pull-down assay showed that PoVps9 interacts with PoVps21, PoRab11 and PoRab1, which have been verified to participate in endocytosis. Furthermore, yeast two-hybrid and co-immunoprecipitation assays confirmed that PoVps9 directly interacts with the GDP form of PoVps21. Thus, PoVps9 is a key protein involved in autophagy and in endocytosis.


Asunto(s)
Autofagia/genética , Endocitosis/genética , Proteínas Fúngicas/genética , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Endocitosis/fisiología , Endosomas/genética , Endosomas/metabolismo , Enfermedades de las Plantas/microbiología , Dominios Proteicos/genética
18.
World J Microbiol Biotechnol ; 34(12): 179, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30456633

RESUMEN

Botryosphaeria kuwatsukai is an important fungal pathogen affecting pear fruits. However, infection processes of this fungus are still unclear. This study seeks to develop the fungal transformation of B. kuwatsukai by Agrobacterium tumefaciens-mediated transformation (ATMT), assess the reliability of appropriate vectors and examine the infection processes in vitro using a GFP labeled strain of B. kuwatsukai. To establish a highly effective transformation system in B. kuwatsukai, binary vectors containing various lengths of H3 promoters and TEF promoters fused with GFP and hygromycin B resistance gene cassettes were constructed. These cassettes were integrated into the genomic DNA of B. kuwatsukai with high transformation frequency by the ATMT method. Transformants showed strong expression of GFP and hygromycin B resistance genes in cells. Furthermore, we investigated if native promoters are more suitable to govern marker genes than other general promoters used in other filamentous fungi. The results obtained herein demonstrate that the vectors constructed in this study can be utilized with high transformation rate. Microscopic examinations also reveal that fungal hyphae undergo morphological changes during the infection process resulting in biotrophic stage of infected host cells. Our results provide genetic insights to further explore the infection processes of B. kuwatsukai.


Asunto(s)
Agrobacterium tumefaciens/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Higromicina B/farmacología , Regiones Promotoras Genéticas/genética , Pyrus/microbiología , Transformación Genética , Agrobacterium tumefaciens/metabolismo , Antibacterianos/farmacología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , ADN Bacteriano/genética , ADN de Hongos , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/genética , Marcadores Genéticos , Vectores Genéticos , Enfermedades de las Plantas/prevención & control , Virulencia
19.
Environ Microbiol ; 18(11): 4170-4187, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27581713

RESUMEN

The ubiquitin system modulates protein functions through targeting substrates for ubiquitination. Here, E2 conjugating enzyme MoRad6-related ubiquitination pathways are identified and analyzed in Magnaporthe oryzae, the causal agent of rice blast disease. Disruption of MoRad6 leads to severe defects in growth, sporulation, conidial germination, appressorium formation, and plant infection. To depict the functions of MoRad6, three putative ubiquitin ligases, MoRad18, MoBre1 and MoUbr1, are also characterized. Deletion of MoRad18 causes minor phenotypic changes, while MoBre1 is required for growth, conidiation and pathogenicity in M. oryzae. Defects in ΔMobre1 likely resulted from the reduction in di- and tri-methylation level of Histone 3 lysine 4 (H3K4). Notably, MoUbr1 is crucial for conidial adhesion and germination, possibly by degrading components of cAMP/PKA and mitogen-activated protein kinase (MAPK) Pmk1 signaling pathways via the N-end rule pathway. Germination failure of ΔMoubr1 conidia could be rescued by elevation of cAMP level or enhanced Pmk1 phosphorylation resulting from further deletion of MoIra1, the M. oryzae homolog of yeast Ira1/2. These reveal vital effects of cAMP/PKA and MAPK Pmk1 signaling on conidial germination in M. oryzae. Altogether, our results suggest that MoRad6-mediated ubiquitination pathways are essential for the infection-related development and pathogenicity of M. oryzae.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/enzimología , Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Fúngicas/genética , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oryza/microbiología , Transducción de Señal , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Virulencia
20.
Environ Microbiol ; 17(11): 4495-510, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25991510

RESUMEN

Rab GTPases are required for vesicle-vacuolar fusion during vacuolar biogenesis in fungi. To date, little is known about the biological functions of the Rab small GTPase components in Magnaporthe oryzae. In this study, we investigated MoYpt7 of M. oryzae, a homologue of the small Ras-like GTPase Ypt7 in Saccharomyces cerevisiae. Cellular localization assays showed that MoYpt7 was predominantly localized to vacuolar membranes. Using a targeted gene disruption strategy, a ΔMoYPT7 mutant was generated that exhibited defects in mycelial growth and production of conidia. The conidia of the ΔMoYPT7 mutant were malformed and defective in the formation of appressoria. Consequently, the ΔMoYPT7 mutant failed to cause disease in rice and barley. Furthermore, the ΔMoYPT7 mutant showed impairment in autophagy, breached cell wall integrity, and higher sensitivity to both calcium and heavy metal stress. Transformants constitutively expressing an active MoYPT7 allele (MoYPT7-CA, Gln67Leu) exhibited distinct phenotypes from the ΔMoYPT7 mutant. Expression of MoYPT7-CA in MoYpt7 reduced pathogenicity and produced more appressoria-forming single-septum conidia. These results indicate that MoYPT7 is required for fungal morphogenesis, vacuole fusion, autophagy, stress resistance and pathogenicity in M. oryzae.


Asunto(s)
Autofagia/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Fusión de Membrana/genética , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Calcio/farmacología , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Hordeum/microbiología , Magnaporthe/genética , Fusión de Membrana/fisiología , Metales Pesados/farmacología , Datos de Secuencia Molecular , Oryza/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Estrés Fisiológico/genética , Virulencia/genética , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA