Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 38(1): 2166039, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36683274

RESUMEN

Inhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated. Therefore, inhibiting MAP4K4 activity in pancreatic tumours is a new therapeutic strategy. Herein, we performed a structure-based virtual screening to identify MAP4K4 inhibitors and discovered the compound F389-0746 with a potent inhibition (IC50 120.7 nM). The results of kinase profiling revealed that F389-0746 was highly selective to MAP4K4 and less likely to cause side effects. Results of in vitro experiments showed that F389-0746 significantly suppressed cancer cell growth and viability. Results of in vivo experiments showed that F389-0746 displayed comparable tumour growth inhibition with the group treated with gemcitabine. These findings suggest that F389-0746 has promising potential to be further developed as a novel pancreatic cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Humanos , Línea Celular Tumoral , Gemcitabina/química , Gemcitabina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pancreáticas/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Simulación por Computador , Neoplasias Pancreáticas
2.
J Enzyme Inhib Med Chem ; 38(1): 2212326, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37190931

RESUMEN

Class II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents. Some resulting compounds bearing the C-4 substituent on a phenoxazine ring displayed potent class II HDAC inhibitory activities. Structure-activity relationship (SAR) of these compounds that inhibited HDAC isoenzymes was disclosed. Molecular modelling analysis demonstrates that the potent activities of C-4 substituted compounds probably arise from π-π stacked interactions between these compounds and class IIa HDAC enzymes. One of these, compound 7d exhibited the most potent class II HDAC inhibition (IC50= 3-870 nM). Notably, it protected neuron cells from H2O2-induced neuron damage at sub-µM concentrations, but with no significant cytotoxicity. These findings show that compound 7d is a lead compound for further development of anti-neurodegenerative agents.


Asunto(s)
Antineoplásicos , Ácidos Hidroxámicos , Ácidos Hidroxámicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Peróxido de Hidrógeno/farmacología , Relación Estructura-Actividad , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Histona Desacetilasa 1/farmacología , Proliferación Celular
3.
J Enzyme Inhib Med Chem ; 37(1): 226-235, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894949

RESUMEN

Bruton tyrosine kinase (BTK) is linked to multiple signalling pathways that regulate cellular survival, activation, and proliferation. A covalent BTK inhibitor has shown favourable outcomes for treating B cell malignant leukaemia. However, covalent inhibitors require a high reactive warhead that may contribute to unexpected toxicity, poor selectivity, or reduced effectiveness in solid tumours. Herein, we report the identification of a novel noncovalent BTK inhibitor. The binding interactions (i.e. interactions from known BTK inhibitors) for the BTK binding site were identified and incorporated into a structure-based virtual screening (SBVS). Top-rank compounds were selected and testing revealed a BTK inhibitor with >50% inhibition at 10 µM concentration. Examining analogues revealed further BTK inhibitors. When tested across solid tumour cell lines, one inhibitor showed favourable inhibitory activity, suggesting its potential for targeting BTK malignant tumours. This inhibitor could serve as a basis for developing an effective BTK inhibitor targeting solid cancers.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
J Nat Prod ; 84(1): 1-10, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33393294

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis and a high degree of relapse seen in patients. Overexpression of FMS-like tyrosine kinase 3 (FLT3) is associated with up to 70% of AML patients. Wild-type FLT3 induces proliferation and inhibits apoptosis in AML cells, while uncontrolled proliferation of FLT3 kinase activity is also associated with FLT3 mutations. Therefore, inhibiting FLT3 activity is a promising AML therapy. Flavonoids are a group of phytochemicals that can target protein kinases, suggesting their potential antitumor activities. In this study, several plant-derived flavonoids have been identified with FLT3 inhibitory activity. Among these compounds, compound 40 (5,7,4'-trihydroxy-6-methoxyflavone) exhibited the most potent inhibition against not only FLT3 (IC50 = 0.44 µM) but also FLT3-D835Y and FLT3-ITD mutants (IC50 = 0.23 and 0.39 µM, respectively). The critical interactions between the FLT3 binding site and the compounds were identified by performing a structure-activity relationship analysis. Furthermore, the results of cellular assays revealed that compounds 28, 31, 32, and 40 exhibited significant cytotoxicity against two human AML cell lines (MOLM-13 and MV-4-11), and compounds 31, 32, and 40 resulted in cell apoptosis and G0/G1 cell cycle arrest. Collectively, these flavonoids have the potential to be further optimized as FLT3 inhibitors and provide valuable chemical information for the development of new AML drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Antineoplásicos/química , Humanos , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología
5.
J Enzyme Inhib Med Chem ; 36(1): 98-108, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33167727

RESUMEN

The STE20 kinase family is a complex signalling cascade that regulates cytoskeletal organisation and modulates the stress response. This signalling cascade includes various kinase mediators, such as TAOK1 and MAP4K5. The dysregulation of the STE20 kinase pathway is linked with cancer malignancy. A small-molecule inhibitor targeting the STE20 kinase pathway has therapeutic potential. In this study, a structure-based virtual screening (SBVS) approach was used to identify potential dual TAOK1 and MAP4K5 inhibitors. Enzymatic assays confirmed three potential dual inhibitors (>50% inhibition) from our virtual screening, and analysis of the TAOK1 and MAP4K5 binding sites indicated common interactions for dual inhibition. Compound 1 revealed potent inhibition of colorectal and lung cancer cell lines. Furthermore, compound 1 arrested cancer cells in the G0/G1 phase, which suggests the induction of apoptosis. Altogether, we show that the STE20 signalling mediators TAOK1 and MAP4K5 are promising targets for drug research.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
J Nat Prod ; 83(10): 2967-2975, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33026809

RESUMEN

Excessive eIF4E phosphorylation by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNK1 and MNK2; collectively, MNKs) has been associated with oncogenesis. The overexpression of eIF4E in acute myeloid leukemia (AML) is related to cancer cell growth and survival. Thus, the inhibition of MNKs and eIF4E phosphorylation are potential therapeutic strategies for AML. Herein, a structure-based virtual screening approach was performed to identify potential MNK inhibitors from natural products. Three flavonoids, apigenin, hispidulin, and luteolin, showed MNK2 inhibitory activity with IC50 values of 308, 252, and 579 nM, respectively. A structure-activity relationship analysis was performed to disclose the molecular interactions. Furthermore, luteolin exhibited substantial inhibitory efficacy against MNK1 (IC50 = 179 nM). Experimental results from cellular assays showed that hispidulin and luteolin inhibited the growth of MOLM-13 and MV4-11 AML cells by downregulating eIF4E phosphorylation and arresting the cell cycle at the G0/G1 phase. Therefore, hispidulin and luteolin showed promising results as lead compounds for the potential treatment for AML.


Asunto(s)
Flavonoides , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda , Proteínas Serina-Treonina Quinasas , Ciclo Celular , Línea Celular Tumoral , Humanos , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad
7.
Bioorg Chem ; 98: 103729, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32179284

RESUMEN

Leucettamine B is a natural product found in marine sponge Leucetta microraphis. Several of analogs of its family, such as aplysinopsine and clathridine, are medicinally active molecules which have applications in many pharmaceuticals and healthcare products; however, thus far, leucettamine B has not been studied. In this report, we describe the synthesis of a new class of analogs of leucettamine B obtained by Knoevenagel condensation using a microwave reactor. The 25 newly synthesized compounds were tested against MDA-MB-468, SW480, and Mahlavu cell lines for anticancer activity. Among them, the carborane-based compound (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(1-closo-carboranyl)-2-thioxo -thiazolidin-4-one (49) and (Z)-5-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(2-(pyrrolidin-1-yl)ethyl)-2-thioxothiazolidin-4-one (31) derivatives were found to have the most potential for use against tumor cells. The carborane derivative 49 had the lowest IC50 value against the SW480 cell line (4.7 µM) and the Mahlavu (6.6 µM) cell line. Furthermore, compound 31 also had a low IC50 value against SW480 (7.5 µM). Our research shows that leucettamine B analogs might have potential for use in cancer chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Boranos/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Boranos/síntesis química , Boranos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Relación Estructura-Actividad , Células Vero
8.
Mar Drugs ; 18(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718084

RESUMEN

13-Acetoxysarcocrassolide (13-AC), a marine cytotoxic product isolated from the alcyonacean coral Lobophytum crassum, exhibited potent antitumor and immunostimulant effects as reported in previous studies. However, the 13-AC antitumor mechanism of action against oral cancer cells remains unclear. The activity of 13-AC against Ca9-22 cancer cells was determined using MTT assay, flow cytometric analysis, immunofluorescence, immunoprecipitation, Western blotting, and siRNA. 13-AC induced apoptosis in oral cancer cells Ca9-22 through the disruption of mitochondrial membrane potential (MMP) and the stimulation of reactive oxygen species (ROS) generation. It increased the expression of apoptosis- and DNA damage-related proteins in a concentration- and time-dependent manner. It exerted potent antitumor effect against oral cancer cells, as demonstrated by the in vivo xenograft animal model. It significantly reduced the tumor volume (55.29%) and tumor weight (90.33%). The pretreatment of Ca9-22 cells with N-acetylcysteine (NAC) inhibited ROS production resulting in the attenuation of the cytotoxic activity of 13-AC. The induction of the Keap1-Nrf2 pathway and the promotion of p62/SQSTM1 were observed in Ca9-22 cells treated with 13-AC. The knockdown of p62 expression by siRNA transfection significantly attenuated the effect of 13-AC on the inhibition of cell viability. Our results indicate that 13-AC exerted its cytotoxic activity through the promotion of ROS generation and the suppression of the antioxidant enzyme activity. The apoptotic effect of 13-AC was found to be mediated through the interruption of the Keap1/Nrf2/p62/SQSTM1 pathway, suggesting its potential future application as an anticancer agent.


Asunto(s)
Antineoplásicos/farmacología , Diterpenos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Sequestosoma-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Neoplasias de la Boca/enzimología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/genética , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266202

RESUMEN

Alzheimer's disease (AD), which is among the most prevalent neurodegenerative diseases, manifests as increasing memory loss and cognitive decline. Tau phosphorylation and aggregation are strongly linked to neurodegeneration, as well as associated with chronic neuroinflammatory processes. The anti-inflammation effects of natural products have led to wide recognition of their potential for use in treating and preventing AD. This study investigated whether eupatin, a polymethoxyflavonoid found in Artemisia species, has inhibitory effects on neuroinflammation and tau phosphorylation. We treated mouse macrophages and microglia cells with lipopolysaccharides (LPSs) to activate inflammatory signals, and we treated neuronal cells with a protein phosphatase 2A inhibitor, okadaic acid (OA), or transfection with pRK5-EGFP-Tau P301L plasmid to induce tau phosphorylation. The results indicated that eupatin significantly reduced the LPS-induced protein expression and phosphorylation of p65 and inducible nitric oxide synthase as well as downstream products interleukin 6 and nitrite, respectively. Furthermore, eupatin markedly inhibited the expression of phospho-tau in response to OA treatment and plasmid transfection. We discovered that this inhibition was achieved through the inhibition of glycogen synthase kinase 3ß (GSK3ß), and molecular docking results suggested that eupatin can sufficiently bind to the GSK3ß active site. Our results demonstrate that eupatin has neuroprotective effects, making it suitable for AD treatment.


Asunto(s)
Antiinflamatorios/farmacología , Flavonoides/farmacología , Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Proteínas tau/antagonistas & inhibidores , Animales , Apoptosis , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Microglía/metabolismo , Microglía/patología , Simulación del Acoplamiento Molecular , Fosforilación , Fitoterapia , Zingiberaceae/química
10.
J Biomed Sci ; 26(1): 42, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133011

RESUMEN

Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.


Asunto(s)
Progresión de la Enfermedad , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/metabolismo , Humanos , Ubiquitinación
11.
Appl Microbiol Biotechnol ; 103(13): 5285-5299, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31028439

RESUMEN

Bacterial meningitis is a severe disease that is fatal to one-third of patients. The major cause of meningitis in neonates is Escherichia coli (E. coli) K1. This bacterium synthesizes an outer membrane protein A (OmpA) that is responsible for the adhesion to (and invasion of) endothelial cells. Thus, the OmpA protein represents a potential target for developing diagnostic and therapeutic agents for meningitis. In this study, we expressed recombinant OmpA proteins with various molecular weights in E. coli. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the molecular size of OmpA's full length (FL) and truncated proteins. OmpA-FL protein was purified for immunizing chickens to produce immunoglobulin yolk (IgY) antibodies. We applied phage display technology to construct antibody libraries (OmpA-FL scFv-S 1.1 × 107 and OmpA-FL scFv-L 5.01 × 106) to select specific anti-OmpA-FL scFv antibodies; these were characterized by their binding ability to recombinant or endogenous OmpA using ELISA, immunofluorescent staining, and confirmed with immunoblotting. We found 12 monoclonal antibodies that react to OmpA fragments; seven scFvs recognize fragments spanning amino acid (aa) residues 1-346, aa 1-287, aa 1-167, and aa 60-192, while five scFvs recognize fragments spanning aa 1-346 and aa 1-287 only. Two fragments (aa 246-346 and aa 287-346) were not recognized with any of the 12 scFvs. Together, the data suggest three antigenic epitopes (60 aa-160 aa, 161 aa-167 aa, 193 aa-245 aa) recognized by monoclonal antibodies. These scFv antibodies show strong reactivity against OmpA proteins. We believe that antibodies show promising diagnostic agents for E. coli K1 meningitis.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Infecciones por Escherichia coli/diagnóstico , Meningitis/diagnóstico , Anticuerpos de Cadena Única/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/genética , Técnicas de Visualización de Superficie Celular , Pollos/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Femenino , Inmunización , Inmunoglobulinas/inmunología , Meningitis/inmunología , Meningitis/microbiología , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/genética
12.
Protein Sci ; 33(6): e5004, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723164

RESUMEN

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Femenino , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos
13.
Int J Biol Macromol ; 259(Pt 1): 129074, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163507

RESUMEN

The overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), commonly observed in neurodegenerative diseases like Alzheimer's disease (AD) and Down syndrome (DS), can induce the formation of neurofibrillary tangles (NFTs) and amyloid plaques. Hence, designing a selective DYRK1A inhibitor would result in a promising small molecule for treating neurodegenerative diseases. Developing selective inhibitors for DYRK1A has been a difficult challenge due to the highly preserved ATP-binding site of protein kinases. In this study, we employed a structure-based virtual screening (SBVS) campaign targeting DYRK1A from a database containing 1.6 million compounds. Enzymatic assays were utilized to verify inhibitory properties, confirming that Y020-3945 and Y020-3957 showed inhibitory activity towards DYRK1A. In particular, the compounds exhibited high selectivity for DYRK1A over a panel of 120 kinases, reduced the phosphorylation of tau, and reversed the tubulin polymerization for microtubule stability. Additionally, treatment with the compounds significantly reduced the secretion of inflammatory cytokines IL-6 and TNF-α activated by DYRK1A-assisted NFTs and Aß oligomers. These identified inhibitors possess promising therapeutic potential for conditions associated with DYRK1A in neurodegenerative diseases. The results showed that Y020-3945 and Y020-3957 demonstrated structural novelty compared to known DYRK1A inhibitors, making them a valuable addition to developing potential treatments for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Microtúbulos/metabolismo , Tirosina/metabolismo , Proteínas tau/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo
14.
Biomed Pharmacother ; 174: 116538, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579401

RESUMEN

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Asunto(s)
Células Ependimogliales , Glaucoma , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/patología , Inhibidores de Histona Desacetilasas/farmacología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Ratones , Histona Desacetilasas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Masculino , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & control
15.
Protein Sci ; 33(6): e5007, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723187

RESUMEN

The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Evaluación Preclínica de Medicamentos , Aprendizaje Automático , Inhibidores de Proteínas Quinasas , Humanos , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasa 8 Dependiente de Ciclina/química , Quinasa 8 Dependiente de Ciclina/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Comput Biol Med ; 156: 106722, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878123

RESUMEN

Identifying hit compounds is an important step in drug development. Unfortunately, this process continues to be a challenging task. Several machine learning models have been generated to aid in simplifying and improving the prediction of candidate compounds. Models tuned for predicting kinase inhibitors have been established. However, an effective model can be limited by the size of the chosen training dataset. In this study, we tested several machine learning models to predict potential kinase inhibitors. A dataset was curated from a number of publicly available repositories. This resulted in a comprehensive dataset covering more than half of the human kinome. More than 2,000 kinase models were established using different model approaches. The performances of the models were compared, and the Keras-MLP model was determined to be the best performing model. The model was then used to screen a chemical library for potential inhibitors targeting platelet-derived growth factor receptor-ß (PDGFRB). Several PDGFRB candidates were selected, and in vitro assays confirmed four compounds with PDGFRB inhibitory activity and IC50 values in the nanomolar range. These results show the effectiveness of machine learning models trained on the reported dataset. This report would aid in the establishment of machine learning models as well as in the discovery of novel kinase inhibitors.


Asunto(s)
Inteligencia Artificial , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Humanos , Aprendizaje Automático
17.
J Food Drug Anal ; 31(2): 358-370, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37335158

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties. Previous reports found that UA had neuroprotective effects in an AD animal model, but the detailed mechanism still needs to be elucidated. In this study, we performed kinase-profiling to show that dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is the main target of UA. Studies showed that the level of DYRK1A in AD patients' brains was higher than that of healthy people, and it was closely related to the occurrence and progression of AD. Our results revealed that UA significantly reduced the activity of DYRK1A, which led to de-phosphorylation of tau and further stabilized microtubule polymerization. UA also provided neuroprotective effects by inhibiting the production of inflammatory cytokines caused by Aß. We further showed that UA significantly improved memory impairment in an AD-like mouse model. In summary, our results indicate that UA is a DYRK1A inhibitor that may provide therapeutic advantages for AD patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Cumarinas/farmacología , Cumarinas/uso terapéutico
18.
Br J Pharmacol ; 180(16): 2120-2139, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929355

RESUMEN

BACKGROUND AND PURPOSE: Acute respiratory distress syndrome (ARDS) is a catastrophic pulmonary inflammatory dysfunction with a high mortality rate. An overwhelming immune response by neutrophils is a key feature in infective or sterile ARDS. The formyl peptide receptor 1 (FPR1) is a crucial damage-sensing receptor for inflammatory reactions in the initiation and progression of neutrophil-mediated ARDS. However, effective targets for controlling dysregulated neutrophilic inflammatory injuries in ARDS are limited. EXPERIMENTAL APPROACH: Human neutrophils were used to explore the anti-inflammatory effects of cyclic lipopeptide anteiso-C13-surfactin (IA-1) from marine Bacillus amyloliquefaciens. The lipopolysaccharide-induced model of ARDS in mice was used to determine the therapeutic potential of IA-1 in ARDS. Lung tissues were harvested for histology analyses. KEY RESULTS: The lipopeptide IA-1 inhibited immune responses of neutrophils, including respiratory burst, degranulation, and expression of adhesion molecules. IA-1 inhibited the binding of N-formyl peptides to FPR1 in human neutrophils and in hFPR1-transfected HEK293 cells. We identified IA-1 as a competitive FPR1 antagonist, thus diminishing the downstream signalling pathways involving calcium, mitogen-activated protein kinases and Akt. Furthermore, IA-1 ameliorated the inflammatory damage to lung tissue, by decreasing neutrophil infiltration, reducing elastase release and oxidative stress in endotoxemic mice. CONCLUSION AND IMPLICATIONS: The lipopeptide IA-1 could serve as a therapeutic option for ARDS by inhibiting FPR1-mediated neutrophilic injury.


Asunto(s)
Neutrófilos , Síndrome de Dificultad Respiratoria , Humanos , Animales , Ratones , Receptores de Formil Péptido/metabolismo , Células HEK293 , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Lipopéptidos/farmacología
19.
RSC Adv ; 13(45): 31595-31601, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908644

RESUMEN

The K2S2O8-mediated generation of p-iminoquinone contributed to the regioselective substitution of isoquinolin-5,8-dione. This hydroxyl group-guided substitution was also applied to selected heterocycles and addressed the regioselectivity issue of quinones. This study has provided an expeditious pathway from isoquinolin-5-ol (5) to ellipticine (1) and isoellipticine (2), which benefits the comprehensive comparison of their activity. Compounds 1 and 2 displayed marked MYLK4 inhibitory activity with IC50 values of 7.1 and 6.1 nM, respectively. In the cellular activity of AML cells (MV-4-11 and MOLM-13), compound 1 showed better AML activity than compound 2.

20.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172473

RESUMEN

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Asunto(s)
Antineoplásicos , Glioblastoma , Ratones , Animales , Monoaminooxidasa/metabolismo , Glioblastoma/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/farmacología , Clorgilina/farmacología , Antineoplásicos/farmacología , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA