Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 425(2): 113540, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36889573

RESUMEN

Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Regulación hacia Abajo/genética , Epigénesis Genética/genética , Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Quinasa Syk/genética , Quinasa Syk/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/genética , Humanos
2.
J Biomed Sci ; 30(1): 91, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936170

RESUMEN

BACKGROUND: Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS: Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS: We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION: UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.


Asunto(s)
Muerte Celular Autofágica , Humanos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Catepsina B/metabolismo , Catepsina B/farmacología , Células Epiteliales/metabolismo , Receptores ErbB , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Cell Mol Life Sci ; 79(2): 108, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35098371

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) plays an essential role in DNA repair by catalyzing the polymerization of ADP-ribose unit to target proteins. Several studies have shown that PARP-1 can regulate inflammatory responses in various disease models. The intracellular Nod-like receptor NLRP3 has emerged as the most crucial innate immune receptor because of its broad specificity in mediating immune response to pathogen invasion and danger signals associated with cellular damage. In our study, we found NLRP3 stimuli-induced caspase-1 maturation and IL-1ß production were impaired by PARP-1 knockout or PARP-1 inhibition in bone marrow-derived macrophages (BMDM). The step 1 signal of NLRP3 inflammasome activation was not affected by PARP-1 deficiency. Moreover, ATP-induced cytosolic ROS production was lower in Parp-1-/- BMDM, resulting in the decreased inflammasome complex assembly. PARP-1 can translocate to cytosol upon ATP stimulation and trigger the PARylation modification on NLRP3, leading to NLRP3 inflammasome assembly. PARP-1 was also a bridge between NLRP3 and thioredoxin-interacting protein (TXNIP) and participated in NLRP3/TXNIP complex formation for inflammasome activation. Overall, PARP-1 positively regulates NLRP3 inflammasome activation via increasing ROS production and interaction with TXNIP and NLRP3, leading to PARylation of NLRP3. Our data demonstrate a novel regulatory mechanism for NLRP3 inflammasome activation by PARP-1. Therefore, PARP-1 can serve as a potential target in the treatment of IL-1ß associated inflammatory diseases.


Asunto(s)
Proteínas Portadoras/genética , Regulación de la Expresión Génica , Inflamasomas/genética , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Tiorredoxinas/genética , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Células Cultivadas , Células HEK293 , Humanos , Immunoblotting , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiorredoxinas/metabolismo
4.
FASEB J ; 35(3): e21393, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33570794

RESUMEN

UV irradiation can injure the epidermis, resulting in sunburn, inflammation, and cutaneous tissue disorders. Previous studies demonstrate that EGFR in keratinocytes can be activated by UVB and contributes to inflammation. Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme and plays an essential role in DNA repair under moderate stress. In this study, we set out to understand how PARP-1 regulates UVB irradiation-induced skin injury and interplays with EGFR to mediate the inflammation response. We found that PARP-1 deficiency exacerbated the UVB-induced inflammation, water loss, and back skin damage in mice. In human primary keratinocytes, UVB can activate PARP-1 and enhance DNA damage upon PARP-1 gene silencing. Moreover, PARP-1 silencing and PARP inhibitor olaparib can suppress UVB-induced COX-2 and MMP-1 expression, but enhance TNF-α and IL-8 expression. In addition, EGFR silencing or EGFR inhibition by gefitinib can decrease UVB-induced COX-2, TNF-α, and IL-8 expression, suggesting EGFR activation via paracrine action can mediate UVB-induced inflammation responses. Immunoblotting data revealed that PARP-1 inhibition decreases UVB-induced EGFR and p38 activation. Pharmacological inhibition of p38 also dramatically led to the attenuation of UVB-induced inflammatory gene expression. Of note, genetic ablation of PARP-1 or EGFR can attenuate UVB-induced ROS production, and antioxidant NAC can attenuate UVB-induced EGFR-p38 signaling axis and PARP-1 activation. These data suggest the regulatory loops among EGFR, PARP-1, and ROS upon UVB stress. PARP-1 not only serves DNA repair function but also orchestrates interactions to EGFR transactivation and ROS production, leading to p38 signaling for inflammatory gene expression in keratinocytes.


Asunto(s)
Receptores ErbB/fisiología , Inflamación/etiología , Queratinocitos/efectos de la radiación , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de la radiación , Activación Transcripcional , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Células Cultivadas , Ciclooxigenasa 2/genética , Reparación del ADN , Receptores ErbB/genética , Humanos , Interleucina-8/genética , Ratones , Transducción de Señal/fisiología
5.
J Biomed Sci ; 26(1): 66, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31481051

RESUMEN

After the publication of this article [1], the authors would like to clarify that some immunoblotting data in Figs. 2f, 3a and 4b were obtained from the same samples but individual SDS-PAGE gels.

6.
J Biomed Sci ; 26(1): 40, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118030

RESUMEN

BACKGROUND: Oxidative stress is a major factor in retinal pigment epithelium (RPE) cells injury that contributes to age-related macular degeneration (AMD). NaIO3 is an oxidative toxic agent and its selective RPE cell damage makes it as a reproducible model of AMD. Although NaIO3 is an oxidative stress inducer, the roles of ROS in NaIO3-elicited signaling pathways and cell viability have not been elucidated, and the effect of NaIO3 on autophagy in RPE cells remains elusive. METHODS: In human ARPE-19 cells, we used Annexin V/PI staining to determine cell viability, immunoblotting to determine protein expression and signaling cascades, confocal microscopy to determine mitochondrial dynamics and mitophagy, and Seahorse analysis to determine mitochondrial oxidative phosphorylation. RESULTS: We found that NaIO3 can dramatically induce cytosolic but not mitochondrial ROS production. NaIO3 can also activate ERK, p38, JNK and Akt, increase LC3II expression, induce Drp-1 phosphorylation and mitochondrial fission, but inhibit mitochondrial respiration. Confocal microscopic data indicated a synergism of NaIO3 and bafilomycin A1 on LC3 punctate formation, indicating the induction of autophagy. Using cytosolic ROS antioxidant NAC, we found that p38 and JNK are downstream signals of ROS and involve in NaIO3-induced cytotoxicity but not in mitochondrial dynamics, while ROS is also involved in LC3II expression. Unexpectedly NAC treatment upon NaIO3 stimulation leads to an enhancement of mitochondrial fragmentation and cell death. Moreover, inhibition of autophagy and Akt further enhances cell susceptibility to NaIO3. CONCLUSIONS: We conclude that NaIO3-induced oxidative stress and cytosolic ROS production exert multiple signaling pathways that coordinate to control cell death in RPE cells. ROS-dependent p38 and JNK activation lead to cytotoxicity, while ROS-mediated autophagy and mitochondrial dynamic balance counteract the cell death mechanisms induced by NaIO3 in RPE cells.


Asunto(s)
Autofagia/fisiología , Yodatos/toxicidad , Degeneración Macular/fisiopatología , Dinámicas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/fisiopatología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Estrés Oxidativo/fisiología , Epitelio Pigmentado de la Retina/efectos de los fármacos
7.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 687-696, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28131718

RESUMEN

Erythropoietin (EPO) and GM-CSF are involved in erythropoiesis, while TGF-ß inhibits proliferation but potentiates differentiation of erythroblasts. Since Syk inhibitor may induce anemia side effect in clinic, here we investigated the role of Syk in the biological actions of EPO and GM-CSF in erythropoiesis. In human erythroleukemia cell line TF-1, Syk inhibitor R406 exerts an enhancement effect with TGF-ß to decrease cell viability, either in the absence or presence of EPO or GM-CSF. Such effect of R406 results from the reduced cell cycle progression and increased cell apoptosis. Notably, unlike Syk, Src family kinases are not involved in the viability control of TF-1 cells. Signaling studies showed that Syk is required for STAT5 and ERK activation induced by EPO, and Akt and ERK activation induced by GM-CSF. Nevertheless, R406 does not change the Smad2/3 signal caused by TGF-ß, and TGF-ß neither affects above signal pathways of EPO and GM-CSF. Of note, Syk is constitutively associated with EPOR in plasma membrane and can bind to STAT5 at active status upon EPO stimulation. Furthermore, EPO-induced hemoglobin γ expression was reduced by R406. In BFU-E and CFU-E colony formation assays in Syk-deficient erythroid progenitor cells, we confirmed the essential role of Syk in erythropoiesis mediated by EPO. Taken together, Syk is a novel upstream signaling molecule of EPOR, and contributes to erythroblast proliferation, survival and differentiation.


Asunto(s)
Eritropoyesis/genética , Eritropoyetina/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Leucocitos/efectos de los fármacos , Quinasa Syk/genética , Factor de Crecimiento Transformador beta/genética , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Feto , Regulación de la Expresión Génica , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Quinasa Syk/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
Cell Commun Signal ; 16(1): 83, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458799

RESUMEN

BACKGROUND: P2X7 is ubiquitously expressed in myeloid cells and regulates the pathophysiology of inflammatory diseases. Since mitochondrial function in microglia is highly associated with microglial functions in controlling neuronal plasticity and brain homeostasis, we interested to explore the roles of P2X7 in mitochondrial and lysosomal functions as well as mitophagy in microglia. METHODS: P2X7-/- bone marrow-derived macrophages (BMDM), primary microglia and BV-2 immortalized microglial cells were used to detect the particular protein expression by immunoblotting. Mitochondrial reactive oxygen species (mitoROS), intracellular calcium, mitochondrial mass and lysosomal integrity were examined by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics and mitophagy after P2X7 activation. RESULTS: In primary microglia, BV-2 microglial cells and BMDM, P2X7 agonist BzATP triggered AMPK activation and LC3II accumulation through reactive oxygen species (ROS) and CaMKKII pathways, and these effects were abolished by P2X7 antagonist A438079 and P2X7 deficiency. Moreover, we detected the dramatic decreases of mitochondrial OCR and mass following P2X7 activation. AMPK inhibition by compound C or AMPK silencing reversed the P2X7 actions in reduction of mitochondrial mass, induction of mitochondrial fission and mitophagy, but not in uncoupling of mitochondrial respiration. Interestingly, we found that P2X7 activation induced nuclear translocation of TFEB via an AMPK-dependent pathway and led to lysosomal biogenesis. Mimicking the actions of BzATP, nigericin also induced ROS-dependent AMPK activation, mitophagy, mitochondrial fission and respiratory inhibition. Longer exposure of BzATP induced cell death, and this effect was accompanied by the lysosomal instability and was inhibited by autophagy and cathepsin B inhibitors. CONCLUSION: Altogether ROS- and CaMKK-dependent AMPK activation is involved in P2X7-mediated mitophagy, mitochondrial dynamics and lysosomal biogenesis in microglial cells, which is followed by cytotoxicity partially resulting from mitophagy and cathepsin B activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lisosomas/metabolismo , Microglía/citología , Mitocondrias/metabolismo , Mitofagia , Receptores Purinérgicos P2X7/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Respiración de la Célula , Activación Enzimática , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo
9.
J Biomed Sci ; 24(1): 39, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629361

RESUMEN

Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor (TNFR) superfamily member 6b (TNFRSF6B), is a soluble decoy receptor which can neutralize the biological functions of three members of tumor necrosis factor superfamily (TNFSF): Fas ligand (FasL), LIGHT, and TL1A. In addition to 'decoy' function, recombinant DcR3.Fc is able to modulate the activation and differentiation of dendritic cells (DCs) and macrophages via 'non-decoy' action. DcR3-treated DCs skew T cell differentiation into Th2 phenotype, while DcR3-treated macrophages behave M2 phenotype. DcR3 is upregulated in various cancer cells and several inflammatory tissues, and is regarded as a potential biomarker to predict inflammatory disease progression and cancer metastasis. However, whether DcR3 is a pathogenic factor or a suppressor to attenuate inflammatory reactions, has not been discussed comprehensively yet. Because mouse genome does not have DcR3, it is not feasible to investigate its physiological functions by gene-knockout approach. However, DcR3-mediated effects in vitro are determined via overexpressing DcR3 or addition of recombinant DcR3.Fc fusion protein. Moreover, CD68-driven DcR3 transgenic mice are used to investigate DcR3-mediated systemic effects in vivo. Upregulation of DcR3 during inflammatory reactions exerts negative-feedback to suppress inflammation, while tumor cells hijack DcR3 to prevent apoptosis and promote tumor growth and invasion. Thus, 'switch-on' of DcR3 expression may be feasible for the treatment of inflammatory diseases and enhance tissue repairing, while 'switch-off' of DcR3 expression can enhance tumor apoptosis and suppress tumor growth in vivo.


Asunto(s)
Apoptosis , Regulación de la Expresión Génica , Factores Inmunológicos/genética , Inflamación/genética , Neoplasias/genética , Miembro 6b de Receptores del Factor de Necrosis Tumoral/genética , Animales , Animales Modificados Genéticamente/genética , Humanos , Factores Inmunológicos/metabolismo , Inflamación/etiología , Ratones/genética , Neoplasias/etiología , Miembro 6b de Receptores del Factor de Necrosis Tumoral/metabolismo
10.
J Cell Mol Med ; 20(9): 1749-60, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27307396

RESUMEN

Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO-induced RPE cell death. Using ARPE-19 as the cell model, this study revealed that MGO induces RPE cell death through a caspase-independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO-induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store-operated calcium channel inhibitors MRS1845 and YM-58483, but not the inositol 1,4,5-trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO-induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE-19 cells. Lastly, inhibition of ER stress by salubrinal and 4-PBA can reduce the MGO-induced intracellular events and cell death. Therefore, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress-dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Piruvaldehído/farmacología , Especies Reactivas de Oxígeno/metabolismo , Adulto , Calcio/metabolismo , Canales de Calcio/metabolismo , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Humanos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Modelos Biológicos
11.
Biochim Biophys Acta ; 1843(3): 531-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24321770

RESUMEN

Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5-/- MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5-/- MEFs were unequivocally worsened by inhibition ofAMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5-/- MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and gammaH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.


Asunto(s)
Autofagia/efectos de los fármacos , Flavonoides/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Autofagia/fisiología , Proteína 5 Relacionada con la Autofagia , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Metilnitronitrosoguanidina/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas/metabolismo , Sirtuina 1/metabolismo
12.
Blood ; 121(1): 95-106, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23152543

RESUMEN

Persistent high fever is one of the most typical clinical symptoms in dengue virus (DV)-infected patients. However, the source of endogenous pyrogen (eg, IL-1ß) and the signaling cascade leading to the activation of inflammasome and caspase-1, which are essential for IL-1ß and IL-18 secretion, during dengue infection have not been elucidated yet. Macrophages can be polarized into distinct phenotypes under the influence of GM-CSF or M-CSF, denoted as GM-Mϕ and M-Mϕ, respectively. We found that DV induced high levels of IL-1ß and IL-18 from GM-Mϕ (inflammatory macrophage) and caused cell death (pyroptosis), whereas M-Mϕ (resting macrophage) did not produce IL-1ß and IL-18 on DV infection even with lipopolysaccharide priming. This observation demonstrates the distinct responses of GM-Mϕ and M-Mϕ to DV infection. Moreover, up-regulation of pro-IL-1ß, pro-IL-18, and NLRP3 associated with caspase-1 activation was observed in DV-infected GM-Mϕ, whereas blockade of CLEC5A/MDL-1, a C-type lectin critical for dengue hemorrhagic fever and Japanese encephalitis virus infection, inhibits NLRP3 inflammasome activation and pyrotopsis in GM-Mϕ. Thus, DV can activate NLRP3 inflammasome via CLEC5A, and GM-Mϕ plays a more important role than M-Mϕ in the pathogenesis of DV infection.


Asunto(s)
Virus del Dengue/fisiología , Dengue/inmunología , Inflamasomas/inmunología , Lectinas Tipo C/fisiología , Activación de Macrófagos , Macrófagos/inmunología , Receptores de Superficie Celular/fisiología , Apoptosis , Permeabilidad Capilar , Proteínas Portadoras/inmunología , Inhibidores de Caspasas/farmacología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Dengue/genética , Endotelio Vascular/fisiología , Fiebre/etiología , Fiebre/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Interleucina-18/biosíntesis , Interleucina-18/genética , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Lectinas Tipo C/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/clasificación , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Interferente Pequeño/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Replicación Viral
13.
Chemistry ; 21(34): 11984-8, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26226896

RESUMEN

A flexible synthetic strategy toward the preparation of diverse N-substituted muramyl dipeptides (N-substituted MDPs) from different protected monosaccharides is described. The synthetic MDPs include N-acetyl MDP and N-glycolyl MDP, known NOD2 ligands, and this methodology allows for structural variation at six positions, including the muramic acid, peptide, and N-substituted moieties. The capacity of these molecules to activate human NOD2 in the innate immune response was also investigated. It was found that addition of the methyl group at the C1 position of N-glycolyl MDP significantly enhanced the NOD2 stimulating activity.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/síntesis química , Inmunidad Innata/efectos de los fármacos , Acetilmuramil-Alanil-Isoglutamina/química , Humanos , Ligandos , Estructura Molecular
14.
J Biomed Sci ; 22: 76, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26381601

RESUMEN

BACKGROUND: Transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) is a key regulator of signal cascades of TNF-α receptor and TLR4, and can induce NF-κB activation for preventing cell apoptosis and eliciting inflammation response. RESULTS: TAK1 inhibitor (TAKI) can decrease the cell viability of murine bone marrow-derived macrophages (BMDM), RAW264.7 and BV-2 cells, but not dermal microvascular endothelial cells, normal human epidermal keratinocytes, THP-1 monocytes, human retinal pigment epithelial cells, microglia CHME3 cells, and some cancer cell lines (CL1.0, HeLa and HCT116). In BMDM, TAKI-induced caspase activation and cell apoptosis were enhanced by lipopolysaccharide (LPS). Moreover, TAKI treatment increased the cytosolic and mitochondrial reactive oxygen species (ROS) production, and ROS scavengers NAC and BHA can inhibit cell death caused by TAKI. In addition, RIP1 inhibitor (necrostatin-1) can protect cells against TAKI-induced mitochondrial ROS production and cell apoptosis. We also observed the mitochondrial membrane potential loss after TAKI treatment and deterioration of oxygen consumption upon combination with LPS. Notably TNF-α neutralization antibody and inhibitor enbrel can decrease the cell death caused by TAKI. CONCLUSIONS: TAKI-induced cytotoxicity is cell context specific, and apoptosis observed in macrophages is dependent on the constitutive autocrine action of TNF-α for RIP1 activation and ROS production.


Asunto(s)
Apoptosis/inmunología , Proteínas Activadoras de GTPasa/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Macrófagos/inmunología , Especies Reactivas de Oxígeno/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Ratones , Transducción de Señal/genética , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/genética
15.
Nature ; 457(7225): 102-6, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19122641

RESUMEN

Metastatic progression depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment of advanced tumours. To understand how cancer cells affect the inflammatory microenvironment, we conducted a biochemical screen for macrophage-activating factors secreted by metastatic carcinomas. Here we show that, among the cell lines screened, Lewis lung carcinoma (LLC) were the most potent macrophage activators leading to production of interleukin-6 (IL-6) and tumour-necrosis factor-alpha (TNF-alpha) through activation of the Toll-like receptor (TLR) family members TLR2 and TLR6. Both TNF-alpha and TLR2 were found to be required for LLC metastasis. Biochemical purification of LLC-conditioned medium (LCM) led to identification of the extracellular matrix proteoglycan versican, which is upregulated in many human tumours including lung cancer, as a macrophage activator that acts through TLR2 and its co-receptors TLR6 and CD14. By activating TLR2:TLR6 complexes and inducing TNF-alpha secretion by myeloid cells, versican strongly enhances LLC metastatic growth. These results explain how advanced cancer cells usurp components of the host innate immune system, including bone-marrow-derived myeloid progenitors, to generate an inflammatory microenvironment hospitable for metastatic growth.


Asunto(s)
Carcinoma Pulmonar de Lewis/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Metástasis de la Neoplasia , Receptor Toll-Like 2/metabolismo , Animales , Carcinoma Pulmonar de Lewis/patología , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Medio de Cultivo Libre de Suero/metabolismo , Interleucina-6/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Versicanos/metabolismo , Versicanos/farmacología
16.
Biochim Biophys Acta ; 1833(5): 1147-56, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23376776

RESUMEN

The Warburg effect is known to be crucial for cancer cells to acquire energy. Nutrient deficiencies are an important phenomenon in solid tumors, but the effect on cancer cell metabolism is not yet clear. In this study, we demonstrate that starvation of HeLa cells by incubation with Hank's buffered salt solution (HBSS) induced cell apoptosis, which was accompanied by the induction of reactive oxygen species (ROS) production and AMP-activated protein kinase (AMPK) phosphorylation. Notably, HBSS starvation increased lactate production, cytoplasmic pyruvate content and decreased oxygen consumption, but failed to change the lactate dehydrogenase (LDH) activity or the glucose uptake. We found that HBSS starvation rapidly induced pyruvate dehydrogenase kinase (PDK) activation and pyruvate dehydrogenase (PDH) phosphorylation, both of which were inhibited by compound C (an AMPK inhibitor), NAC (a ROS scavenger), and the dominant negative mutant of AMPK. Our data further revealed the involvement of ROS production in AMPK activation. Moreover, DCA (a PDK inhibitor), NAC, and compound C all significantly decreased HBSS starvation-induced lactate production accompanied by enhancement of HBSS starvation-induced cell apoptosis. Not only in HeLa cells, HBSS-induced lactate production and PDH phosphorylation were also observed in CL1.5, A431 and human umbilical vein endothelial cells. Taken together, we for the first time demonstrated that a low-nutrient condition drives cancer cells to utilize glycolysis to produce ATP, and this increases the Warburg effect through a novel mechanism involving ROS/AMPK-dependent activation of PDK. Such an event contributes to protecting cells from apoptosis upon nutrient deprivation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Trifosfato/biosíntesis , Apoptosis/efectos de los fármacos , Privación de Alimentos , Glucólisis , Células HeLa , Humanos , Soluciones Isotónicas/farmacología , Ácido Láctico/metabolismo , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ácido Pirúvico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Activación Transcripcional/genética
17.
Biochim Biophys Acta ; 1832(10): 1538-48, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23707413

RESUMEN

Decoy receptor 3 (DcR3) is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A) and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is upregulated in skin lesions in psoriasis, which is characterized by chronic inflammation and angiogenesis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown. Here, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional cell studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) and transforming growth factor (TGF)-α strikingly upregulated DcR3 production. TNF-αenhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-α-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-κB pathway was critically involved in the molecular mechanisms underlying the action of EGFR and inflammatory cytokines. Collectively, the novel regulatory mechanisms of DcR3 expression in psoriasis, particularly in keratinocytes and endothelial cells, provides new insight into the pathogenesis of psoriasis and may also contribute to the understanding of other diseases that involve DcR3 overexpression.


Asunto(s)
Receptores ErbB/fisiología , Queratinocitos/metabolismo , Psoriasis/metabolismo , Miembro 6b de Receptores del Factor de Necrosis Tumoral/metabolismo , Regulación hacia Arriba/fisiología , Células Cultivadas , Humanos , FN-kappa B/metabolismo , Transducción de Señal
18.
J Immunol ; 189(8): 4154-64, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22972931

RESUMEN

3-Methyladenine (3-MA) is one of the most commonly used inhibitors in autophagy research today. However, rather than inhibiting class III PI3K that is involved in autophagy suppression, 3-MA might also interfere with class I PI3K and consequently augment autophagy flux. In this study, we aim to get a thorough understanding on the action mechanisms of 3-MA in TLR4-mediated inflammatory responses in RAW264.7 macrophages and, moreover, to decipher the action of 3-MA in modulation of autophagy. We found that 3-MA could enhance LPS-induced NF-κB activation and production of TNF-α, inducible NO synthase (iNOS), cyclooxygenase-2, IL-1ß, and IL-12. In contrast, 3-MA suppressed LPS-induced IFN-ß production and STAT signaling. Studies revealed that 3-MA can, through inhibition of Akt as a result of class I PI3K interference, positively regulate p38, JNK, and p65, but negatively regulate TANK-binding kinase 1 and IFN regulatory factor 3 mediated by TLR4. As glycogen synthase kinase 3ß (GSK3ß) is an important Akt substrate, we further explored its involvement in the actions of 3-MA. 3-MA was found to enhance LPS-induced NF-κB activation, iNOS, and pro-IL-1ß expression, and these actions were reversed by either GSK3ß inhibitors or small interfering GSK3ß. Lastly, we demonstrated that 3-MA acts as an autophagy inducer in RAW264.7 macrophages, but the stimulating effects on NF-κB activation and iNOS and cyclooxygenase-2 expression were not affected in LPS-stimulated macrophages with small interfering autophagy protein-5 treatment. These results not only shed new light on the action mechanisms of 3-MA to differentially regulate inflammatory outcomes derived from TLR4-mediated MyD88 and Toll/IL-1R domain-containing adapter inducing IFN-ß pathways, but also highlight the necessity to check autophagy status upon taking 3-MA as a general autophagy inhibitor.


Asunto(s)
Adenina/análogos & derivados , Autofagia/inmunología , Glucógeno Sintasa Quinasa 3/metabolismo , Mediadores de Inflamación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adenina/farmacología , Adenina/fisiología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Glucógeno Sintasa Quinasa 3 beta , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
19.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671928

RESUMEN

The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation.

20.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539876

RESUMEN

Calcium/calmodulin-dependent serine protein kinase (CASK) is a scaffold protein and plays critical roles in neuronal synaptic formation and brain development. Previously, CASK was shown to associate with EGFR to maintain the vulval cell differentiation in C. elegans. In this study, we explored the role of CASK in CHME3 microglial cells. We found that CASK silencing protects cells from H2O2-induced cell death by attenuating PARP-1 activation, mitochondrial membrane potential loss, reactive oxygen species production, and mitochondrial fission, but it increases oxidative phosphorylation. The PARP-1 inhibitor olaparib blocks H2O2-induced cell death, suggesting the death mode of parthanatos. CASK silencing also increases AKT activation but decreases AMPK activation under H2O2 treatment. Pharmacological data further indicate that both signaling changes contribute to cell protection. Different from the canonical parthanatos pathway, we did not observe the AIF translocation from mitochondria into the nucleus, suggesting a non-canonical AIF-independent parthanatos in H2O2-treated CHME3 cells. Moreover, we found that CASK silencing upregulates the EGFR gene and protein expression and increases H2O2-induced EGFR phosphorylation in CHME3 microglia. However, EGFR activation does not contribute to cell protection caused by CASK silencing. In conclusion, CASK plays a crucial role in microglial parthanatos upon H2O2 treatment via stimulation of PARP-1 and AMPK but the inhibition of AKT. These findings suggest that CASK might be an ideal therapeutic target for CNS disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA