Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; : e2400882, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845075

RESUMEN

Fluorescent probes are an indispensable tool in the realm of bioimaging technologies, providing valuable insights into the assessment of biomaterial integrity and structural properties. However, incorporating fluorophores into scaffolds made from melt electrowriting (MEW) poses a challenge due to the sustained, elevated temperatures that this processing technique requires. In this context, [n]cycloparaphenylenes ([n]CPPs) serve as excellent fluorophores for MEW processing with the additional benefit of customizable emissions profiles with the same excitation wavelength. Three fluorescent blends are used with distinct [n]CPPs with emission wavelengths of either 466, 494, or 533 nm, identifying 0.01 wt% as the preferred concentration. It is discovered that [n]CPPs disperse well within poly(ε-caprolactone) (PCL) and maintain their fluorescence even after a week of continuous heating at 80 °C. The [n]CPP-PCL blends show no cytotoxicity and support counterstaining with commonly used DAPI (Ex/Em: 359 nm/457 nm), rhodamine- (Ex/Em: 542/565 nm), and fluorescein-tagged (Ex/Em: 490/515 nm) phalloidin stains. Using different color [n]CPP-PCL blends, different MEW fibers are sequentially deposited into a semi-woven scaffold and onto a solution electrospun membrane composed of [8]CPP-PCL as a contrasting substrate for the [10]CPP-PCL MEW fibers. In general, [n]CPPs are potent fluorophores for MEW, providing new imaging options for this technology.

2.
Chem Rev ; 120(19): 10662-10694, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32302091

RESUMEN

This review provides a detailed overview of the rapidly advancing field of biofabrication, particularly with regards to the use of photo-cross-linking (i.e., light-based) techniques. The major emphasis of this review is on the fundamentals of photo-cross-linking and key criteria identified for the successful design and implementation of photo-cross-linked bioinks and bioresins in extrusion-based and lithography-based bioprinting. The general mechanisms associated with photo-cross-linking (e.g., free-radical chain polymerization, thiol-ene, photomediated redox) of natural and synthetic materials are described to inform bioink and bioresin design, which includes the selection of polymers, functional group modifications, photoinitiators, and light sources that enable facile and cytocompatible photo-cross-linking. Depending on material selection and the bioprinting technique of interest, we describe the specific bioink or bioresin properties and criteria that must be achieved to ensure optimal printability and utility. Finally, examples of current state-of-the-art applications of light-based bioprinting for in vitro tissue models, tissue engineering, and regenerative medicine are provided to further motivate future opportunities within the bioprinting landscape that are facilitated with light.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión , Reactivos de Enlaces Cruzados/química , Impresión Tridimensional , Ingeniería de Tejidos , Humanos , Procesos Fotoquímicos
3.
ACS Biomater Sci Eng ; 10(3): 1843-1855, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37988293

RESUMEN

The incorporation of 3D-printing principles with electrohydrodynamic (EHD) jetting provides a harmonious balance between resolution and processing speed, allowing for the creation of high-resolution centimeter-scale constructs. Typically, EHD jetting of polymer melts offers the advantage of rapid solidification, while processing polymer solutions requires solvent evaporation to transition into solid fibers, creating challenges for reliable printing. This study navigates a hybrid approach aimed at minimizing printing instabilities by combining viscous solutions and achieving rapid solidification through freezing. Our method introduces and fully describes a modified open-source 3D printer equipped with a frozen collector that operates at -35 °C. As a proof of concept, highly concentrated silk fibroin aqueous solutions are processed into stable micrometer scale jets, which rapidly solidify upon contact with the frozen collector. This results in the formation of uniform microfibers characterized by an average diameter of 27 ± 5 µm, a textured surface, and porous internal channels. The absence of instabilities and the notably fast direct writing speed of 42 mm·s-1 enable precise, fast, and reliable deposition of these fibers into porous constructs spanning several centimeters. The effectiveness of this approach is demonstrated by the consistent production of biologically relevant scaffolds that can be customized with varying pore sizes and shapes. The achieved degree of control over micrometric jet solidification and deposition dynamics represents a significant advancement in EHD jetting, particularly within the domain of aqueous polymer solutions, offering new opportunities for the development of intricate and functional biological structures.


Asunto(s)
Fibroínas , Andamios del Tejido/química , Polímeros/química , Agua , Impresión Tridimensional
4.
Biofabrication ; 16(2)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38373325

RESUMEN

The delivery of oxygen within tissue engineered constructs is essential for cell survivability; however, achieving this within larger biofabricated constructs poses a significant challenge. Efforts to overcome this limitation often involve the delivery of synthetic oxygen generating compounds. The application of some of these compounds is problematic for the biofabrication of living tissues due to inherent issues such as cytotoxicity, hyperoxia and limited structural stability due to oxygen inhibition of radical-based crosslinking processes. This study aims to develop an oxygen delivering system relying on natural-derived components which are cytocompatible, allow for photopolymerization and advanced biofabrication processes, and improve cell survivability under hypoxia (1% O2). We explore the binding of human hemoglobin (Hb) as a natural oxygen deposit within photopolymerizable allylated gelatin (GelAGE) hydrogels through the spontaneous complex formation of Hb with negatively charged biomolecules (heparin, hyaluronic acid, and bovine serum albumin). We systematically study the effect of biomolecule inclusion on cytotoxicity, hydrogel network properties, Hb incorporation efficiency, oxygen carrying capacity, cell viability, and compatibility with 3D-bioassembly processes within melt electrowritten (MEW) scaffolds. All biomolecules were successfully incorporated within GelAGE hydrogels, displaying controllable mechanical properties and cytocompatibility. Results demonstrated efficient and tailorable Hb incorporation within GelAGE-Heparin hydrogels. The developed system was compatible with microfluidics and photopolymerization processes, allowing for the production of GelAGE-Heparin-Hb spheres. Hb-loaded spheres were assembled into MEW polycaprolactone scaffolds, significantly increasing the local oxygen levels. Ultimately, cells within Hb-loaded constructs demonstrated good cell survivability under hypoxia. Taken together, we successfully developed a hydrogel system that retains Hb as a natural oxygen deposit post-photopolymerization, protecting Hb from free-radical oxidation while remaining compatible with biofabrication of large constructs. The developed GelAGE-Heparin-Hb system allows for physoxic oxygen delivery and thus possesses a vast potential for use across broad tissue engineering and biofabrication strategies to help eliminate cell death due to hypoxia.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Hidrogeles/farmacología , Hidrogeles/química , Hipoxia , Oxígeno , Heparina/farmacología
5.
Inorg Chem ; 52(7): 4046-60, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23458224

RESUMEN

The syntheses and single crystal X-ray structures of [Ag(5-nitroquinoline)2]NO3 (1), [Ag(8-nitroquinoline)2]NO3·H2O (2), [Ag(6-methoxy-8-nitroquinoline)(NO3)]n (3), [Ag(3-quinolinecarbonitrile)(NO3)]n (4), [Ag(3-quinolinecarbonitrile)2]NO3 (5), and [Ag(6-quinolinecarboxylic acid)2]NO3 (6) are described. As an alternative to solution chemistry, solid-state grinding could be used to prepare compounds 1 and 3, but the preparation of 4 and 5 in this way failed. The Ag(I) ions in the monomeric compounds 1, 2, 5, and 6 are coordinated to two ligands via the nitrogen atoms of the quinoline rings, thereby forming a distorted linear coordination geometry with Ag-N bond distances of 2.142(2)-2.336(2) Å and N-Ag-N bond angles of 163.62(13)°-172.25(13)°. The 1D coordination polymers 3 and 4 contain Ag(I) centers coordinating one ligand and two bridging nitrate groups, thereby forming a distorted trigonal planar coordination geometry with Ag-N bond distances of 2.2700(14) and 2.224(5) Å, Ag-O bond distances of 2.261(4)-2.536(5) Å, and N-Ag-O bond angles of 115.23(5)°-155.56(5)°. Hirshfeld surface analyses of compounds 1-6 are presented as d(norm) and curvedness maps. The d(norm) maps show different interaction sites around the Ag(I) ions, i.e., Ag···Ag interactions and possible O-H···O, C-H···O, C-H···N, and C-H···C hydrogen bonds. Curvedness maps are a good way of visualizing π-π stacking interactions between molecules. The antimicrobial activities of compounds 1, 2, and 6 were screened against 15 different multidrug-resistant strains of bacteria isolated from diabetic foot ulcers and compared to the antimicrobial activities of the clinically used silver sulfadiazine (SS). Compound 2 showed activity similar to SS against this set of test organisms, being active against all strains and having slightly better average silver efficiency than SS (5 vs 6 µg Ag/mL). Against the standard nonresistant bacterial strains of Staphylococcus aureus , Pseudomonas aeruginosa , Proteus mirabilis , and Streptococcus pyogenes , compound 1 performed better than silver nitrate, with an average MIC of 6 µg Ag/mL versus 18 µg Ag/mL for the reference AgNO3. Electrospray ionization mass spectrometry (ESI-MS) analyses of compounds 3 and 6 in DMSO/MeOH confirm the two-coordinated Ag(+) complexes in solution, and the results of the (1)H NMR titrations of DMSO solutions of 5-nitroquinoline and 8-nitroquinoline with AgNO3 in DMSO suggest that 5-nitroquinoline is more strongly coordinated to the silver ion.


Asunto(s)
Antiinfecciosos/síntesis química , Complejos de Coordinación/síntesis química , Quinolinas/química , Plata/química , Antiinfecciosos/farmacología , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/crecimiento & desarrollo , Relación Estructura-Actividad
6.
Macromol Biosci ; : e2300457, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035637

RESUMEN

Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.

7.
Biofabrication ; 14(3)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35320796

RESUMEN

Bone regeneration of critical-sized bone defects, bone fractures or joint replacements remains a significant clinical challenge. Although there has been rapid advancement in both the fields of bone tissue engineering and additive manufacturing, functional bone implants with rapid vascularization capacity to ensure osseointegration and long-term biological fixation in large bone defects remains limited in clinics. In this study, we developed anin vitrovascularized bone implant by combining cell-laden hydrogels with direct metal printed (DMP) porous titanium alloys (Ti-6Al-4V). A 5 wt% allylated gelatin (GelAGE), was utilized to co-encapsulate human mesenchymal stromal cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) to investigate concurrent osteogenic and vasculogenic performance. DMP macro-porous Ti-6Al-4V scaffolds were subsequently infused/enriched with cell-laden GelAGE to examine the feasibility to deliver cells and engineer vascular-like networks in the hybrid implant. Furthermore, as a proof of concept, a full-scale porous Ti-6Al-4V acetabular cup was impregnated with cell-laden hydrogel to validate the clinical potential of this strategy. The vasculogenic potential was evaluated by examining micro-capillary formation coupled with capillary network maturation and stabilization. Osteogenic differentiation was assessed via alkaline phosphatase activity as well as osteocalcin and osteopontin expression. Our results suggested that GelAGE supported HUVECs spreading and vascular-like network formation, along with osteogenesis of hMSCs. Titanium hybrid constructs with cell-laden hydrogel demonstrated enhanced osteogenesis with similar vasculogenic capability compared to the cell-laden hydrogel alone constructs. The full-scale implant with cell-laden hydrogel coating similarly showed cell distribution and spreading, implying the potential for further clinical application. Our study presents the feasibility of integrating bio-functional hydrogels with porous titanium implants to fabricate a vascularized hybrid construct with both mechanical support and preferable biological functionality (osteogenesis/vasculogenesis), which paves the way for improved strategies to enhance bone regeneration in complex large bone defects achieving long-term bone-implant fixation.


Asunto(s)
Oseointegración , Osteogénesis , Células Endoteliales , Humanos , Hidrogeles/farmacología , Titanio/farmacología
8.
Biofabrication ; 14(3)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35344942

RESUMEN

Recently developed modular bioassembly techniques hold tremendous potential in tissue engineering and regenerative medicine, due to their ability to recreate the complex microarchitecture of native tissue. Here, we developed a novel approach to fabricate hybrid tissue-engineered constructs adopting high-throughput microfluidic and 3D bioassembly strategies. Osteochondral tissue fabrication was adopted as an example in this study, because of the challenges in fabricating load bearing osteochondral tissue constructs with phenotypically distinct zonal architecture. By developing cell-instructive chondrogenic and osteogenic bioink microsphere modules in high-throughput, together with precise manipulation of the 3D bioassembly process, we successfully fabricated hybrid engineered osteochondral tissuein vitrowith integrated but distinct cartilage and bone layers. Furthermore, by encapsulating allogeneic umbilical cord blood-derived mesenchymal stromal cells, and demonstrating chondrogenic and osteogenic differentiation, the hybrid biofabrication of hydrogel microspheres in this 3D bioassembly model offers potential for an off-the-shelf, single-surgery strategy for osteochondral tissue repair.


Asunto(s)
Cartílago Articular , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Diferenciación Celular , Condrogénesis , Hidrogeles , Microesferas , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido
9.
Bioengineering (Basel) ; 8(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562945

RESUMEN

Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.

10.
Polymers (Basel) ; 13(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198796

RESUMEN

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320-500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320-500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400-500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.

11.
Adv Sci (Weinh) ; 8(22): e2103320, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34632729

RESUMEN

While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D-bioassembly platform is introduced to primarily study fusion of cartilage-cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs). 3D-bioassembly of two adjacent hMSCs spheroids displays coordinated migration and noteworthy matrix deposition while the interface between two hAC tissues lacks both cells and type-II collagen. Cocultures contribute to increased phenotypic stability in the fusion region while close initial contact between hMSCs and hACs (mixed) yields superior hyaline differentiation over more distant, indirect cocultures. This reduced ability of potent hMSCs to fuse with mature hAC tissue further underlines the major clinical challenge that is integration. Together, this data offer the first proof of an in vitro 3D-model to reliably study lateral fusion mechanisms between multicellular spheroids and mature cartilage tissues. Ultimately, this high-throughput 3D-bioassembly model provides a bridge between understanding cellular differentiation and tissue fusion and offers the potential to probe fundamental biological mechanisms that underpin organogenesis.


Asunto(s)
Modelos Biológicos , Esferoides Celulares/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido , Células Cultivadas , Técnicas de Cocultivo , Humanos
12.
Essays Biochem ; 65(3): 569-585, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34156062

RESUMEN

There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Materiales Biocompatibles/química , Regeneración Ósea/fisiología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
Adv Healthc Mater ; 9(15): e1901544, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32323473

RESUMEN

Extrusion-based 3D bioprinting is hampered by the inability to print materials of low-viscosity. In this study, a single initiating system based on ruthenium (Ru) and sodium persulfate (SPS) is utilized for a sequential dual-step crosslinking approach: 1) primary (partial) crosslinking in absence of light to alter the bioink's rheological profile for print fidelity, and 2) subsequent secondary post-printing crosslinking for shape maintenance. Allyl-functionalized gelatin (Gel-AGE) is used as a bioink, allowing thiol-ene click reaction between allyl moieties and thiolated crosslinkers. A systematic investigation of primary crosslinking reveals that a thiol-persulfate redox reaction facilitates thiol-ene crosslinking, mediating an increase in bioink viscosity that is controllable by tailoring the Ru/SPS, crosslinker, and/or Gel-AGE concentrations. Thereafter, subsequent photoinitiated secondary crosslinking then facilitates maximum conversion of thiol-ene bonds between AGE and thiol groups. The dual-step crosslinking method is applicable to a wide biofabrication window (3-10 wt% Gel-AGE) and is demonstrated to allow printing of low-density (3 wt%) Gel-AGE, normally exhibiting low viscosity (4 mPa s), with high shape fidelity and high cell viability (>80%) over 7 days of culture. The presented approach can therefore be used as a one-pot system for printing low-viscous bioinks without the need for multiple initiating systems, viscosity enhancers, or complex chemical modifications.


Asunto(s)
Bioimpresión , Gelatina , Tinta , Impresión Tridimensional , Reología
14.
Macromol Biosci ; 19(6): e1900098, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026127

RESUMEN

In this study, the cyto-compatibility and cellular functionality of cell-laden gelatin-methacryloyl (Gel-MA) hydrogels fabricated using a set of photo-initiators which absorb in 400-450 nm of the visible light range are investigated. Gel-MA hydrogels cross-linked using ruthenium (Ru) and sodium persulfate (SPS), are characterized to have comparable physico-mechanical properties as Gel-MA gels photo-polymerized using more conventionally adopted photo-initiators, such as 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959) and lithium phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP). It is demonstrated that the Ru/SPS system has a less adverse effect on the viability and metabolic activity of human articular chondrocytes encapsulated in Gel-MA hydrogels for up to 35 days. Furthermore, cell-laden constructs cross-linked using the Ru/SPS system have significantly higher glycosaminoglycan content and re-differentiation capacity as compared to cells encapsulated using I2959 and LAP. Moreover, the Ru/SPS system offers significantly greater light penetration depth as compared to the I2959 system, allowing thick (10 mm) Gel-MA hydrogels to be fabricated with homogenous cross-linking density throughout the construct. These results demonstrate the considerable advantages of the Ru/SPS system over traditional UV polymerizing systems in terms of clinical relevance and practicability for applications such as cell encapsulation, biofabrication, and in situ cross-linking of injectable hydrogels.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Hidrogeles/farmacología , Ingeniería de Tejidos , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/efectos de la radiación , Gelatina/química , Gelatina/farmacología , Gelatina/efectos de la radiación , Humanos , Hidrogeles/química , Hidrogeles/efectos de la radiación , Luz , Polimerizacion/efectos de los fármacos , Polimerizacion/efectos de la radiación , Polímeros/química , Polímeros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA