Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(17): 6809-6821, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850395

RESUMEN

ATP-dependent phospholipid flippase activity crucial for generating lipid asymmetry was first detected in red blood cell (RBC) membranes, but the P4-ATPases responsible have not been directly determined. Using affinity-based MS, we show that ATP11C is the only abundant P4-ATPase phospholipid flippase in human RBCs, whereas ATP11C and ATP8A1 are the major P4-ATPases in mouse RBCs. We also found that ATP11A and ATP11B are present at low levels. Mutations in the gene encoding ATP11C are responsible for blood and liver disorders, but the disease mechanisms are not known. Using heterologous expression, we show that the T415N substitution in the phosphorylation motif of ATP11C, responsible for congenital hemolytic anemia, reduces ATP11C expression, increases retention in the endoplasmic reticulum, and decreases ATPase activity by 61% relative to WT ATP11C. The I355K substitution in the transmembrane domain associated with cholestasis and anemia in mice was expressed at WT levels and trafficked to the plasma membrane but was devoid of activity. We conclude that the T415N variant causes significant protein misfolding, resulting in low protein expression, cellular mislocalization, and reduced functional activity. In contrast, the I355K variant folds and traffics normally but lacks key contacts required for activity. We propose that the loss in ATP11C phospholipid flippase activity coupled with phospholipid scramblase activity results in the exposure of phosphatidylserine on the surface of RBCs, decreasing RBC survival and resulting in anemia.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Eritrocitos/enzimología , Fosfolípidos/metabolismo , Adenosina Trifosfatasas/genética , Animales , Membrana Eritrocítica/enzimología , Membrana Eritrocítica/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosforilación , Pliegue de Proteína
2.
Dev Cell ; 35(4): 418-31, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26609957

RESUMEN

Axon extension at the growing tip requires elevated local protein supply, with a capability sustainable over long axons in varying environments. The exact mechanisms, however, remain elusive. Here we report that axon-promoting factors elicited a retrograde transport-dependent removal of proteasomes from nascent axon terminals, thereby increasing protein stability at axon tips. Such an effect occurred through phosphorylation of a dynein-interacting proteasome adaptor protein Ecm29. During the transition from immature neurites to nascent axons in cultured hippocampal neurons, live-cell imaging revealed a significant increase of the retrograde axonal transport of fluorescently labeled 20S proteasomes. This retrograde proteasome transport depended on neuron stage and increased with axon lengths. Blockade of retrograde transport caused accumulation of proteasomes, reduction of axon growth, and attenuation of growth-associated Par6 at the axon tip of newly polarized neurons. Our results delineate a regulatory mechanism that controls proteasome abundance via preferential transport required for axon development in newborn neurons.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Hipocampo/citología , Neuritas/fisiología , Neuronas/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , AMP Cíclico/farmacología , Dineínas/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hipocampo/metabolismo , Immunoblotting , Neuronas/metabolismo , Fosforilación , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA