Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 187(9): 2143-2157.e15, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670072

RESUMEN

A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.


Asunto(s)
Neuronas , Animales , Ratones , Ratas , Neuronas/metabolismo , Neuronas/citología , Neuronas/fisiología , Blastocisto/metabolismo , Blastocisto/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Encéfalo/citología , Encéfalo/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Especificidad de la Especie , Ratones Endogámicos C57BL , Masculino
2.
EMBO J ; 30(1): 194-204, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21113126

RESUMEN

Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.


Asunto(s)
Estimulantes Ganglionares/farmacología , Plasticidad Neuronal/efectos de los fármacos , Nicotina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Regulación hacia Arriba/efectos de los fármacos , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebelosa/citología , Corteza Cerebelosa/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Estimulantes Ganglionares/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nicotina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
J Neurochem ; 127(5): 632-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24032433

RESUMEN

Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert 'silent' glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. We find that activation of nicotinic receptors on astrocytes releases a component that specifically recruits AMPA receptors to glutamatergic synapses. The recruitment appears to occur preferentially at what may be 'silent synapses', that is, synapses that have all the components required for glutamatergic transmission (including NMDA receptors) but lack sufficient AMPA receptors to generate a response. The results are unexpected and open up new possibilities for mechanisms underlying network formation and synaptic plasticity.


Asunto(s)
Astrocitos/metabolismo , Hipocampo/citología , Receptores AMPA/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Astrocitos/citología , Células Cultivadas , Corteza Cerebral/citología , Femenino , Ácido Glutámico/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Embarazo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
4.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808721

RESUMEN

Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights: Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.

5.
Elife ; 122023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862092

RESUMEN

The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.


Asunto(s)
MicroARNs , Animales , Adulto , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Encéfalo/metabolismo , Mamíferos/genética
6.
Front Mol Neurosci ; 14: 646072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994943

RESUMEN

Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.

7.
Curr Opin Neurobiol ; 57: 54-61, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30743177

RESUMEN

Non-coding RNAs have emerged as potent regulators of numerous cellular processes. In neurons and circuits, these molecules serve especially critical functions that ensure neural activity is maintained within appropriate physiological parameters. Their targets include synaptic proteins, ion channels, neurotransmitter receptors, and components of essential signaling cascades. Here, we discuss how several species of non-coding RNAs (ncRNAs) regulate intrinsic excitability and synaptic transmission, both during development and in mature circuits. Furthermore, we present the relationships between aberrant ncRNA expression and psychiatric disorders. The research presented here demonstrates how ncRNAs can be useful tools for elucidating fundamental neurobiology mechanisms and identifying the key molecular players.


Asunto(s)
Red Nerviosa , Transducción de Señal , Redes Neurales de la Computación , Neuronas , ARN no Traducido
8.
Neurosci Lett ; 411(1): 72-6, 2007 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-17052838

RESUMEN

Nicotine is known to decrease body weight in normal rodents and human smokers, whereas nicotine withdrawal or smoking cessation can increase body weight. We have found that mice fed a high fat diet do not show the anorectic effect of chronic nicotine treatment, but do increase their body weight following nicotine withdrawal. Nicotine withdrawal is accompanied by increased expression of the orexigenic peptides neuropeptide Y and Agouti-related protein in the hypothalamus, and decreased expression of the metabolic protein uncoupling protein-3 in brown adipose tissue. These data suggest that diet can influence the ability of nicotine to modulate body weight regulation and demonstrate that chronic nicotine exposure results in adaptive changes in central and peripheral molecules which regulate feeding behavior and energy metabolism.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Peso Corporal/fisiología , Hipotálamo/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Neuropéptido Y/metabolismo , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Síndrome de Abstinencia a Sustancias/etiología , Tejido Adiposo Pardo/efectos de los fármacos , Proteína de Señalización Agouti , Proteína Relacionada con Agouti , Análisis de Varianza , Animales , Peso Corporal/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Proteína Desacopladora 3
9.
Neuron ; 95(6): 1319-1333.e5, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28867550

RESUMEN

Changes in social preference of amphibian larvae result from sustained exposure to kinship odorants. To understand the molecular and cellular mechanisms of this neuroplasticity, we investigated the effects of olfactory system activation on neurotransmitter (NT) expression in accessory olfactory bulb (AOB) interneurons during development. We show that protracted exposure to kin or non-kin odorants changes the number of dopamine (DA)- or gamma aminobutyric acid (GABA)-expressing neurons, with corresponding changes in attraction/aversion behavior. Changing the relative number of dopaminergic and GABAergic AOB interneurons or locally introducing DA or GABA receptor antagonists alters kinship preference. We then isolate AOB microRNAs (miRs) differentially regulated across these conditions. Inhibition of miR-375 and miR-200b reveals that they target Pax6 and Bcl11b to regulate the dopaminergic and GABAergic phenotypes. The results illuminate the role of NT switching governing experience-dependent social preference. VIDEO ABSTRACT.


Asunto(s)
Conducta de Elección/fisiología , Dopamina/biosíntesis , MicroARNs/fisiología , Neurotransmisores/biosíntesis , Bulbo Olfatorio/metabolismo , Conducta Social , Ácido gamma-Aminobutírico/biosíntesis , Animales , Dopamina/fisiología , Antagonistas de Dopamina/farmacología , Antagonistas del GABA/farmacología , Interneuronas/fisiología , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/fisiología , Factor de Transcripción PAX6/fisiología , Feromonas/fisiología , Hermanos , Factores de Transcripción/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis , Ácido gamma-Aminobutírico/fisiología
10.
Neuron ; 92(6): 1337-1351, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27939580

RESUMEN

A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Conducta Animal , Encéfalo/crecimiento & desarrollo , Dendritas , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Mol Cell Biol ; 32(3): 619-32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22144581

RESUMEN

The dynamic expression of AMPA-type glutamate receptors (AMPA-R) at synapses is a key determinant of synaptic plasticity, including neuroadaptations to drugs of abuse. Recently, microRNAs (miRNAs) have emerged as important posttranscriptional regulators of synaptic plasticity, but whether they target glutamate receptors to mediate this effect is not known. Here we used microarray screening to identify miRNAs that regulate synaptic plasticity within the nucleus accumbens, a brain region critical to forming drug-seeking habits. One of the miRNAs that showed a robust enrichment at medium spiny neuron synapses was miR-181a. Using bioinformatics tools, we detected a highly conserved miR-181a binding site within the mRNA encoding the GluA2 subunit of AMPA-Rs. Overexpression and knockdown of miR-181a in primary neurons demonstrated that this miRNA is a negative posttranscriptional regulator of GluA2 expression. Additionally, miR-181a overexpression reduced GluA2 surface expression, spine formation, and miniature excitatory postsynaptic current (mEPSC) frequency in hippocampal neurons, suggesting that miR-181a could regulate synaptic function. Moreover, miR-181a expression was induced by dopamine signaling in primary neurons, as well as by cocaine and amphetamines, in a mouse model of chronic drug treatment. Taken together, our results identify miR-181a as a key regulator of mammalian AMPA-type glutamate receptors, with potential implications for the regulation of drug-induced synaptic plasticity.


Asunto(s)
Dopamina/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Receptores AMPA/biosíntesis , Animales , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Metanfetamina/farmacología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Receptores AMPA/metabolismo
12.
J Cell Biol ; 194(6): 889-904, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21930776

RESUMEN

Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs that induce well-documented neuroadaptations. We observed brain region- and drug-specific changes in miR expression levels and identified miR-29a/b as regulators of synaptic morphology. In vitro imaging experiments indicated that miR-29a/b reduce mushroom-shaped dendritic spines on hippocampal neurons with a concomitant increase in filopodial-like outgrowths, suggesting an effect on synapse formation via actin cytoskeleton remodeling. We identified Arpc3, a component of the ARP2/3 actin nucleation complex, as a bona fide target for down-regulation by miR-29a/b. This work provides evidence that targeting of Arpc3 by miR-29a/b fine tunes structural plasticity by regulating actin network branching in mature and developing spines.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Espinas Dendríticas/metabolismo , MicroARNs/genética , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Actinas/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/genética , Regulación hacia Abajo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Neuronas/metabolismo , Transfección
13.
Mol Pharmacol ; 66(1): 85-96, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15213299

RESUMEN

By acting through retinal nicotinic acetylcholine receptors (nAChRs), acetylcholine plays an important role in the development of both the retina and central visual pathways. Ligand binding and immunoprecipitation studies with subunit-specific antibodies showed that the expression of alphaBungarotoxin (alphaBgtx) and high-affinity epibatidine (Epi) receptors is regulated developmentally and increases until postnatal day 21 (P21). The increase in Epi receptors is caused by a selective increase in the subtypes containing the alpha2, alpha4, alpha6, beta2, and beta3 subunits. Immunopurification studies revealed three major populations of Epi receptors on P21: alpha6(*) receptors (26%), which contain the alpha6beta3beta2, alpha6alpha4beta3beta2, and alpha6alpha3/alpha2beta3beta2 subtypes; alpha4(non-alpha6)(*) receptors (60%), which contain the alpha2alpha4beta2 and alpha4beta2 subtypes; and (non-alpha4/non-alpha6)(*) receptors (14%), which contain the alpha2beta2/beta4 and alpha3beta2/beta4 subtypes. These three populations can be pharmacologically discriminated using alphaconotoxin MII, which binds the alpha6(*) population with high affinity. In situ hybridization showed that the transcripts for all of the subunits are heterogeneously distributed throughout retinal neurons at P21, with alpha3, alpha6, and beta3 transcripts preferentially concentrated in the ganglion cell layer, alpha5 in the inner nuclear layer, and alpha4 and beta2 distributed rather homogeneously. To investigate whether nAChR expression is affected by visual experience, we also studied dark-reared P21 rats. Visual deprivation had no effect on the expression of alphaBgtx receptors or the developmentally regulated Epi receptors containing the alpha2, alpha6, and/or beta3 subunits but significantly increased the expression of the Epi receptors containing the alpha4 and beta2 subunits. Overall, this study demonstrates that the retina is the rat neural region that expresses the widest array of nAChR subtypes. These receptors have a specific distribution, and their expression is finely regulated during development and by visual experience.


Asunto(s)
Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Retina/metabolismo , Animales , Western Blotting , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Radioisótopos de Yodo , Masculino , Agonistas Nicotínicos/farmacología , Subunidades de Proteína/clasificación , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Piridinas/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/clasificación , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/genética , Retina/efectos de los fármacos , Retina/crecimiento & desarrollo , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA