Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Cell ; 36(7): 2729-2745, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38652680

RESUMEN

Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing combined with RNA sequencing revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.


Asunto(s)
Brachypodium , Flores , Regulación de la Expresión Génica de las Plantas , Histonas , Proteínas de Plantas , Brachypodium/genética , Brachypodium/fisiología , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Histonas/metabolismo , Mutación/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Cromatina/metabolismo , Cromatina/genética
2.
Proc Natl Acad Sci U S A ; 121(25): e2406788121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865267

RESUMEN

Heritable symbionts are common among animals in nature, but the molecular mechanisms underpinning symbiont invasions of host populations have been elusive. In this study, we demonstrate the spread of Rickettsia in an invasive agricultural pest, the whitefly Bemisia tabaci Mediterranean (MED), across northeastern China from 2018 to 2023. Here, we show that the beneficial symbiont Rickettsia spreads by manipulating host hormone signals. Our analyses suggest that Rickettsia have been horizontally acquired by B. tabaci MED from another invasive whitefly B. tabaci Middle East-Asia Minor 1 during periods of coexistence. Rickettsia is transmitted maternally and horizontally from female B. tabaci MED individuals. Rickettsia infection enhances fecundity and results in female bias among whiteflies. Our findings reveal that Rickettsia infection stimulates juvenile hormone (JH) synthesis, in turn enhancing fecundity, copulation events, and the female ratio of the offspring. Consequently, Rickettsia infection results in increased whitefly fecundity and female bias by modulating the JH pathway. More female progeny facilitates the transmission of Rickettsia. This study illustrates that the spread of Rickettsia among invasive whiteflies in northeastern China is propelled by host hormone regulation. Such symbiont invasions lead to rapid physiological and molecular evolution in the host, influencing the biology and ecology of an invasive species.


Asunto(s)
Fertilidad , Hemípteros , Rickettsia , Razón de Masculinidad , Simbiosis , Animales , Rickettsia/fisiología , Hemípteros/microbiología , Hemípteros/fisiología , Femenino , Masculino , Hormonas Juveniles/metabolismo , China
3.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683997

RESUMEN

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Microfluídica/métodos , Análisis de la Célula Individual/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Fenotipo , Línea Celular Tumoral , Inmunoterapia/métodos , Perfilación de la Expresión Génica/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
4.
PLoS Pathog ; 20(1): e1011967, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271479

RESUMEN

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , Catelicidinas/farmacología , Internalización del Virus , Antivirales/metabolismo
5.
Nucleic Acids Res ; 52(4): 1814-1829, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38180827

RESUMEN

To establish lifelong, latent infection, herpesviruses circularize their linear, double-stranded, DNA genomes through an unknown mechanism. Kaposi's sarcoma (KS) herpesvirus (KSHV), a gamma herpesvirus, is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV persists in latently infected cells as a multi-copy, extrachromosomal episome. Here, we show the KSHV genome rapidly circularizes following infection, and viral protein expression is unnecessary for this process. The DNA damage response (DDR) kinases, ATM and DNA-PKcs, each exert roles, and absence of both severely compromises circularization and latency. These deficiencies were rescued by expression of ATM and DNA-PKcs, but not catalytically inactive mutants. In contrast, γH2AX did not function in KSHV circularization. The linear viral genomic ends resemble a DNA double strand break, and non-homologous DNA end joining (NHEJ) and homologous recombination (HR) reporters indicate both NHEJ and HR contribute to KSHV circularization. Last, we show, similar to KSHV, ATM and DNA-PKcs have roles in circularization of the alpha herpesvirus, herpes simplex virus-1 (HSV-1), while γH2AX does not. Therefore, the DDR mediates KSHV and HSV-1 circularization. This strategy may serve as a general herpesvirus mechanism to initiate latency, and its disruption may provide new opportunities for prevention of herpesvirus disease.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/genética , Latencia del Virus/genética , ADN , Reparación del ADN
6.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290847

RESUMEN

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.


Asunto(s)
Mapeo Encefálico , Encéfalo , Femenino , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sensación
7.
Am J Pathol ; 194(6): 1126-1136, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38432512

RESUMEN

The tumor necrosis factor α-induced protein 8 (TIPE, also TNFAIP8 or OXi-α) family is a newly discovered series of proteins involved in immune regulation and tumorigenesis. TIPE1, a member of the TIPE/TNFAIP8/OXi-α family, has emerged as an anticancer-drug target, as it promotes cancer cell apoptosis and inhibits cell proliferation. The current study aimed to systematically reveal that TIPE1 regulates the activity of protein arginine methyltransferase (PRMT)-1 and the subsequent methylation of signal transducer and activator of transcription (STAT)-3 to suppress oral squamous cell carcinoma (OSCC) growth. TIPE1 was down-regulated in the OSCC cell lines (Tca8113, SCC25, Cal27, SCC15, and HSC27). TIPE1 overexpression significantly inhibited cell proliferation, colony formation, in vivo tumorgenicity, and Ki-67 expression in OSCC. TIPE1 interacted with the catalytic region of PRMT1 and inhibited STAT3 methylation. The effects of TIPE1 on OSCC cells were alleviated after PRMT1 overexpression, confirming the importance of this interaction to the tumor-suppressive effects of TIPE1. Together, these findings confirmed that TIPE1 mediated PRMT1 suppression through direct binding to its catalytic domain and subsequently inhibited the methylation and expression of STAT3 in OSCC cells, thereby inhibiting cell growth and tumorgenicity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proliferación Celular , Neoplasias de la Boca , Proteína-Arginina N-Metiltransferasas , Factor de Transcripción STAT3 , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metilación , Ratones Desnudos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
8.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850215

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Asunto(s)
Cerebelo , Conectoma , Enfermedad de Machado-Joseph , Transcriptoma , Humanos , Masculino , Femenino , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Persona de Mediana Edad , Adulto , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión por Resonancia Magnética
9.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696609

RESUMEN

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Hierro/metabolismo , Hierro/análisis , Preescolar , Mapeo Encefálico/métodos , Sustancia Blanca/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen
10.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447683

RESUMEN

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Enfermedad de Alzheimer/patología , Conectoma/métodos , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Atrofia/patología , Hierro
11.
J Am Chem Soc ; 146(32): 22661-22674, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39099104

RESUMEN

Synthesizing anisotropic polymeric nanoparticles (NPs) with well-defined shapes, dimensions, and molecular orientations is a very challenging task. Herein, we report the synthesis of surprisingly highly uniform shape-anisotropic polymer NPs with uniaxial internal molecular orientation. Keys to our method are synchronized polymerization and self-assembly (SPSA), which can even be realized by regular dispersion polymerization. This is demonstrated using a monomer containing a rigid 4-nitroazobenzene (NAB) side group. The short nucleation period, the completion of microphase separation before molecular motion is frozen, and sufficient low particle/solvent interfacial tension are shown to be the origins of the highly uniform dimensions, single liquid crystal domains, and well-defined anisotropic shape of particles. The liquid crystallization ability of the polymers, control of molecular weight distribution, and the polymerization kinetics are identified as three key factors controlling the NP formation. The uniformity of these NPs facilitates their SA formation into colloidal crystals. The particles exhibit optically anisotropic properties depending on orientations and, in particular, show intriguing photoswitchable LC-glass (order-disorder) transition, which can be used for the detection of ultraviolet (UV) light and allows the fabrication of photoreversible colloidal films.

12.
Anal Chem ; 96(1): 67-75, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153001

RESUMEN

Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.

13.
Anal Chem ; 96(33): 13421-13428, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39109704

RESUMEN

Mitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology. Controllable induction and real-time tracking of mtDNA dynamics and behavior are of paramount significance for studying mitochondrial function and morphology, facilitating a deeper understanding of mitochondria-related diseases. In this work, a fluorescent platinum complex was designed and developed that not only induces mitochondrial DNA (mtDNA) aggregation but also triggers mitochondrial autophagy (mitophagy) through the MDV pathway for damaged mtDNA clearance in living cells. Additionally, this complex allows for the real-time monitoring of these processes. This complex may serve as a valuable tool for studying mitochondrial microautophagy and holds promise for broader applications in cellular imaging and disease research.


Asunto(s)
ADN Mitocondrial , Colorantes Fluorescentes , Mitofagia , ADN Mitocondrial/metabolismo , Humanos , Colorantes Fluorescentes/química , Mitocondrias/metabolismo , Platino (Metal)/química , Células HeLa
14.
BMC Plant Biol ; 24(1): 440, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778295

RESUMEN

BACKGROUND: Exploring the relationship between parasitic plants and answering taxonomic questions is still challenging. The subtribe Scurrulinae (Loranthaceae), which has a wide distribution in Asia and Africa, provides an excellent example to illuminate this scenario. Using a comprehensive taxon sampling of the subtribe, this study focuses on infer the phylogenetic relationships within Scurrulinae, investigate the phylogeny and biogeography of the subtribe, and establish a phylogenetically-based classification incorporating both molecular and morphological evidence. We conducted phylogenetic, historical biogeography, and ancestral character state reconstruction analyses of Scurrulinae based on the sequences of six DNA regions from 89 individuals to represent all five tribes of the Loranthaceae and the dataset from eleven morphological characters. RESULTS: The results strongly support the non-monophyletic of Scurrulinae, with Phyllodesmis recognized as a separate genus from its allies Taxillus and Scurrula based on the results from molecular data and morphological character reconstruction. The mistletoe Scurrulinae originated in Asia during the Oligocene. Scurrulinae was inferred to have been widespread in Asia but did not disperse to other areas. The African species of Taxillus, T. wiensii, was confirmed to have originated in Africa from African Loranthaceae ca. 17 Ma, and evolved independently from Asian members of Taxillus. CONCLUSIONS: This study based on comprehensive taxon sampling of the subtribe Scurrulinae, strongly supports the relationship between genera. The taxonomic treatment for Phyllodesmis was provided. The historical biogeography of mistletoe Scurrulinae was determined with origin in Asia during the Oligocene. Taxillus and Scurrula diverged during the climatic optimum in the middle Miocene. Taxillus wiensii originated in Africa from African Loranthaceae, and is an independent lineage from the Asian species of Taxillus. Diversification of Scurrulinae and the development of endemic species in Asia may have been supported by the fast-changing climate, including cooling, drying, and the progressive uplift of the high mountains in central Asia, especially during the late Pliocene and Pleistocene.


Asunto(s)
Loranthaceae , Filogenia , Filogeografía , Loranthaceae/genética , África , Asia , Evolución Biológica , ADN de Plantas/genética , Evolución Molecular , Análisis de Secuencia de ADN
15.
Small ; 20(25): e2310342, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221682

RESUMEN

Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.


Asunto(s)
Ferroptosis , Nanomedicina , Neoplasias , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nanomedicina/métodos , Animales , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico
16.
Small ; 20(19): e2308731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327169

RESUMEN

Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.


Asunto(s)
Inmunoterapia , Ganglios Linfáticos , Nanopartículas , Neoplasias , Inmunoterapia/métodos , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Nanopartículas/química , Animales
17.
J Transl Med ; 22(1): 107, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279111

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS: We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS: We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS: We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.


Asunto(s)
Glioblastoma , ARN Largo no Codificante , Adulto , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , ARN Largo no Codificante/genética , Radiómica , Pronóstico , Área Bajo la Curva , Microambiente Tumoral/genética
18.
BMC Microbiol ; 24(1): 273, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044145

RESUMEN

BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Plaguicidas/farmacología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos , Simbiosis , ARN Ribosómico 16S/genética , Microbiota/efectos de los fármacos , Tetraciclina/farmacología
19.
New Phytol ; 242(5): 2369-2379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38186378

RESUMEN

Evergreen broad-leaved forests (EBLFs) are dominated by a monsoon climate and form a distinct biome in East Asia with notably high biodiversity. However, the origin and evolution of East Asian EBLFs (EAEBLFs) remain elusive despite the estimation of divergence times for various representative lineages. Using 72 selected generic-level characteristic lineages, we constructed an integrated lineage accumulation rate (LAR) curve based on their crown ages. According to the crown-based LAR, the EAEBLF origin was identified at least as the early Oligocene (c. 31.8 million years ago (Ma)). The accumulation rate of the characteristic genera peaked at 25.2 and 6.4 Ma, coinciding with the two intensification periods of the Asian monsoon at the Oligocene - Miocene and the Miocene - Pliocene boundaries, respectively. Moreover, the LAR was highly correlated with precipitation in the EAEBLF region and negatively to global temperature, as revealed through time-lag cross-correlation analyses. An early Oligocene origin is suggested for EAEBLFs, bridging the gap between paleobotanical and molecular dating studies and solving conflicts among previous estimates based on individual representative lineages. The strong correlation between the crown-based LAR and the precipitation brought about by the Asian monsoon emphasizes its irreplaceable role in the origin and development of EAEBLFs.


Asunto(s)
Evolución Biológica , Bosques , Asia Oriental , Biodiversidad , Filogenia , Hojas de la Planta/anatomía & histología , Árboles/fisiología
20.
New Phytol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039772

RESUMEN

Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA