Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063244

RESUMEN

Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.


Asunto(s)
Arabidopsis , Brassica napus , Cadmio , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Factores de Transcripción , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
BMC Plant Biol ; 23(1): 479, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807039

RESUMEN

BACKGROUND: Rapeseed (Brassica napus L.) is the third largest source of vegetable oil in the world, and Sclerotinia sclerotiorum (Lib.) is a major soil-borne fungal plant pathogen that infects more than 400 plant species, including B. napus. Sclerotinia stem rot caused an annual loss of 10 - 20% in rapeseed yield. Exploring the molecular mechanisms in response to S. sclerotiorum infection in B. napus is beneficial for breeding and cultivation of resistant varieties. To gain a better understanding of the mechanisms regarding B. napus tolerance to Sclerotinia stem rot, we employed a miRNAome sequencing approach and comprehensively investigated global miRNA expression profile among five relatively resistant lines and five susceptible lines of oilseed at 0, 24, and 48 h post-inoculation. RESULTS: In this study, a total of 40 known and 1105 novel miRNAs were differentially expressed after S. sclerotiorum infection, including miR156, miR6028, miR394, miR390, miR395, miR166, miR171, miR167, miR164, and miR172. Furthermore, 8,523 genes were predicted as targets for these differentially expressed miRNAs. These target genes were mainly associated with disease resistance (R) genes, signal transduction, transcription factors, and hormones. Constitutively expressing miR156b (OX156b) plants strengthened Arabidopsis resistance against S. sclerotiorum accompanied by smaller necrotic lesions, whereas blocking miR156 expression in Arabidopsis (MIM156) led to greater susceptibility to S. sclerotiorum disease, associated with extensive cell death of necrotic lesions. CONCLUSIONS: This study reveals the distinct difference in miRNA profiling between the relatively resistant lines and susceptible lines of B. napus in response to S. sclerotiorum. The identified differentially expressed miRNAs related to sclerotinia stem rot resistance are involved in regulating resistance to S. sclerotiorum in rapeseed by targeting genes related to R genes, signal transduction, transcription factors, and hormones. miR156 positively modulates the resistance to S. sclerotiorum infection by restricting colonization of S. sclerotiorum mycelia. This study provides a broad view of miRNA expression changes after S. sclerotiorum infection in oilseed and is the first to elucidate the function and mechanism underlying the miR156 response to S. sclerotiorum infection in oilseed rape.


Asunto(s)
Arabidopsis , Ascomicetos , Brassica napus , Brassica rapa , MicroARNs , Brassica napus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Brassica rapa/genética , Ascomicetos/fisiología , Hormonas/metabolismo , Factores de Transcripción/metabolismo
3.
Theor Appl Genet ; 136(7): 161, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37354229

RESUMEN

KEY MESSAGE: We report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets. Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.


Asunto(s)
Brassica napus , Mapeo Cromosómico/métodos , Brassica napus/genética , Brassica napus/metabolismo , Consenso , Fitomejoramiento , Semillas/genética , Semillas/metabolismo
4.
BMC Plant Biol ; 22(1): 244, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585493

RESUMEN

BACKGROUND: Leaf color mutants have reduced photosynthetic efficiency, which has severely negative impacts on crop growth and economic product yield. There are different chlorophyll mutants in Arabidopsis and crops that can be used for genetic control and molecular mechanism studies of chlorophyll biosynthesis, chloroplast development and photoefficiency. Chlorophyll mutants in Brassica napus are mostly used for mapping and location research but are rarely used for physiological research. The chlorophyll-deficient mutant in this experiment were both genetically mapped and physiologically analyzed. RESULTS: In this study, yellow leaf mutant of Brassica napus L. mutated by ethyl methyl sulfone (EMS) had significantly lower chlorophyll a, b and carotenoid contents than the wild type, and the net photosynthetic efficiency, stomatal conductance and transpiration rate were all significantly reduced. The mutant had sparse chloroplast distribution and weak autofluorescence. The granule stacks were reduced, and the shape was extremely irregular, with more broken stromal lamella. Transcriptome data analysis enriched the differentially expressed genes mainly in phenylpropane and sugar metabolism. The mutant was mapped to a 2.72 Mb region on A01 by using BSA-Seq, and the region was validated by SSR markers. CONCLUSIONS: The mutant chlorophyll content and photosynthetic efficiency were significantly reduced compared with those of the wild type. Abnormal chloroplasts and thylakoids less connected to the stroma lamella appeared in the mutant. This work on the mutant will facilitate the process of cloning the BnaA01.cd gene and provide more genetic and physiological information concerning chloroplast development in Brassica napus.


Asunto(s)
Arabidopsis , Brassica napus , Arabidopsis/genética , Brassica napus/genética , Brassica napus/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Mapeo Cromosómico , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
5.
Plant Cell Environ ; 45(1): 248-261, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697825

RESUMEN

Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of Mӓule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.


Asunto(s)
Ascomicetos/patogenicidad , Brassica napus/genética , Brassica napus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Brassica napus/metabolismo , Sistemas CRISPR-Cas , Pared Celular/química , Pared Celular/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genoma de Planta , Lignina/metabolismo , Familia de Multigenes , Mutación , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/genética , Plantas Modificadas Genéticamente
6.
Theor Appl Genet ; 135(10): 3497-3510, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962210

RESUMEN

KEY MESSAGE: A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Perfilación de la Expresión Génica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Fitomejoramiento , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética
7.
Genomics ; 113(1 Pt 2): 1096-1108, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171205

RESUMEN

Polygalacturonase (PG) is a hydrolase that participates in pectin degradation, pod shattering and fruit softening. Here, we identified 2786 PG genes across 54 plants, which could be divided into three groups. Evolutionary analysis suggested that PG family originated from the charophyte green algae, and Subgroups A2-A4 evolved from the Subgroup A1 after the tracheophyte-angiosperm split. Whole-genome duplication was the major force leading to PG gene expansion. Interestingly, the PG genes continuously expanded in eudicots, whereas it contracted in monocots after the eudicot-monocot split. PG genes in Group A are expressed at high levels in floral organs, whereas genes in Groups B and C are expressed at high levels in various tissues. Moreover, three BnaPG15 members were found for their potential possibility in pod shattering in Brassica napus. Our results provide new insight into the evolutionary history of PG family, and their potentially functional role in plants.


Asunto(s)
Evolución Molecular , Magnoliopsida/genética , Proteínas de Plantas/genética , Poligalacturonasa/genética , Ecosistema , Magnoliopsida/clasificación , Magnoliopsida/fisiología , Filogenia , Filogeografía
8.
BMC Plant Biol ; 21(1): 246, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051742

RESUMEN

BACKGROUND: Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS: The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS: In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.


Asunto(s)
Brassica napus/genética , Flavonoides/metabolismo , Lignina/metabolismo , Transcriptoma , Brassica napus/metabolismo , Pared Celular/metabolismo , Biología Computacional , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética
9.
BMC Plant Biol ; 21(1): 388, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416870

RESUMEN

BACKGROUND: Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. RESULTS: In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20-1 and qSPC_20-2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20-1 and qSPC_20-2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. CONCLUSIONS: These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.


Asunto(s)
Mapeo Cromosómico , Estudios de Asociación Genética , Glycine max/química , Glycine max/genética , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Semillas/química , Productos Agrícolas/química , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Variación Genética , Genotipo , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN
10.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281271

RESUMEN

The allotetraploid species Brassica juncea (mustard) is grown worldwide as oilseed and vegetable crops; the yellow seed-color trait is particularly important for oilseed crops. Here, to examine the factors affecting seed coat color, we performed a metabolic and transcriptomic analysis of yellow- and dark-seeded B. juncea seeds. In this study, we identified 236 compounds, including 31 phenolic acids, 47 flavonoids, 17 glucosinolates, 38 lipids, 69 other hydroxycinnamic acid compounds, and 34 novel unknown compounds. Of these, 36 compounds (especially epicatechin and its derivatives) accumulated significantly different levels during the development of yellow- and dark-seeded B. juncea. In addition, the transcript levels of BjuDFR, BjuANS,BjuBAN, BjuTT8, and BjuTT19 were closely associated with changes to epicatechin and its derivatives during seed development, implicating this pathway in the seed coat color determinant in B. juncea. Furthermore, we found numerous variations of sequences in the TT8A genes that may be associated with the stability of seed coat color in B. rapa, B. napus, and B. juncea, which might have undergone functional differentiation during polyploidization in the Brassica species. The results provide valuable information for understanding the accumulation of metabolites in the seed coat color of B. juncea and lay a foundation for exploring the underlying mechanism.


Asunto(s)
Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Catequina/análogos & derivados , Catequina/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosinolatos/metabolismo , Metaboloma , Planta de la Mostaza/crecimiento & desarrollo , Fenotipo , Pigmentación/genética , Semillas/genética , Semillas/metabolismo
11.
Nucleic Acids Res ; 46(D1): D1229-D1236, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28977518

RESUMEN

Real-time quantitative polymerase chain reaction (qPCR) is one of the most important methods for analyzing the expression patterns of target genes. However, successful qPCR experiments rely heavily on the use of high-quality primers. Various qPCR primer databases have been developed to address this issue, but these databases target only a few important organisms. Here, we developed the qPrimerDB database, founded on an automatic gene-specific qPCR primer design and thermodynamics-based validation workflow. The qPrimerDB database is the most comprehensive qPCR primer database available to date, with a web front-end providing gene-specific and pre-computed primer pairs across 147 important organisms, including human, mouse, zebrafish, yeast, thale cress, rice and maize. In this database, we provide 3331426 of the best primer pairs for each gene, based on primer pair coverage, as well as 47760359 alternative gene-specific primer pairs, which can be conveniently batch downloaded. The specificity and efficiency was validated for qPCR primer pairs for 66 randomly selected genes, in six different organisms, through qPCR assays and gel electrophoresis. The qPrimerDB database represents a valuable, timesaving resource for gene expression analysis. This resource, which will be routinely updated, is publically accessible at http://biodb.swu.edu.cn/qprimerdb.


Asunto(s)
Cartilla de ADN/genética , Bases de Datos de Ácidos Nucleicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Humanos , Internet , Ratones , Reproducibilidad de los Resultados , Termodinámica , Interfaz Usuario-Computador , Flujo de Trabajo
12.
BMC Genomics ; 20(1): 21, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626329

RESUMEN

BACKGROUND: Optimum flowering time is a key agronomic trait in Brassica napus. To investigate the genetic architecture and genetic regulation of flowering time in this important crop, we conducted quantitative trait loci (QTL) analysis of flowering time in a recombinant inbred line (RIL) population, including lines with extreme differences in flowering time, in six environments, along with RNA-Seq analysis. RESULTS: We detected 27 QTLs distributed on eight chromosomes among six environments, including one major QTL on chromosome C02 that explained 11-25% of the phenotypic variation and was stably detected in all six environments. RNA-Seq analysis revealed 105 flowering time-related differentially expressed genes (DEGs) that play roles in the circadian clock/photoperiod, autonomous pathway, and hormone and vernalization pathways. We focused on DEGs related to the regulation of flowering time, especially DEGs in QTL regions. CONCLUSIONS: We identified 45 flowering time-related genes in these QTL regions, eight of which are DEGs, including key flowering time genes PSEUDO RESPONSE REGULATOR 7 (PRR7) and FY (located in a major QTL region on C02). These findings provide insights into the genetic architecture of flowering time in B. napus.


Asunto(s)
Brassica napus/genética , Flores/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética , Alelos , Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Secuenciación del Exoma
13.
BMC Plant Biol ; 19(1): 336, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370790

RESUMEN

BACKGROUND: APETALA2-like genes encode plant-specific transcription factors, some of which possess one microRNA172 (miR172) binding site. The miR172 and its target euAP2 genes are involved in the process of phase transformation and flower organ development in many plants. However, the roles of miR172 and its target AP2 genes remain largely unknown in Brassica napus (B. napus). RESULTS: In this study, 19 euAP2 and four miR172 genes were identified in the B. napus genome. A sequence analysis suggested that 17 euAP2 genes were targeted by Bna-miR172 in the 3' coding region. EuAP2s were classified into five major groups in B.napus. This classification was consistent with the exon-intron structure and motif organization. An analysis of the nonsynonymous and synonymous substitution rates revealed that the euAP2 genes had gone through purifying selection. Whole genome duplication (WGD) or segmental duplication events played a major role in the expansion of the euAP2 gene family. A cis-regulatory element (CRE) analysis suggested that the euAP2s were involved in the response to light, hormones, stress, and developmental processes including circadian control, endosperm and meristem expression. Expression analysis of the miR172-targeted euAP2s in nine different tissues showed diverse spatiotemporal expression patterns. Most euAP2 genes were highly expressed in the floral organs, suggesting their specific functions in flower development. BnaAP2-1, BnaAP2-5 and BnaTOE1-2 had higher expression levels in late-flowering material than early-flowering material based on RNA-seq and qRT-PCR, indicating that they may act as floral suppressors. CONCLUSIONS: Overall, analyses of the evolution, structure, tissue specificity and expression of the euAP2 genes were peformed in B.napus. Based on the RNA-seq and experimental data, euAP2 may be involved in flower development. Three euAP2 genes (BnaAP2-1, BnaAP2-5 and BnaTOE1-2) might be regarded as floral suppressors. The results of this study provide insights for further functional characterization of the miR172 /euAP2 module in B.napus.


Asunto(s)
Brassica napus/genética , Flores/crecimiento & desarrollo , Genes de Plantas/genética , MicroARNs/genética , Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico , Secuencia Conservada/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , MicroARNs/fisiología , Filogenia , Alineación de Secuencia
14.
Molecules ; 24(10)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126120

RESUMEN

Lignin is an important biological polymer in plants that is necessary for plant secondary cell wall ontogenesis. The laccase (LAC) gene family catalyzes lignification and has been suggested to play a vital role in the plant kingdom. In this study, we identified 45 LAC genes from the Brassica napus genome (BnLACs), 25 LAC genes from the Brassica rapa genome (BrLACs) and 8 LAC genes from the Brassica oleracea genome (BoLACs). These LAC genes could be divided into five groups in a cladogram and members in same group had similar structures and conserved motifs. All BnLACs contained hormone- and stress- related elements determined by cis-element analysis. The expression of BnLACs was relatively higher in the root, seed coat and stem than in other tissues. Furthermore, BnLAC4 and its predicted downstream genes showed earlier expression in the silique pericarps of short silique lines than long silique lines. Three miRNAs (miR397a, miR397b and miR6034) target 11 BnLACs were also predicted. The expression changes of BnLACs under series of stresses were further investigated by RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR). The study will give a deeper understanding of the LAC gene family evolution and functions in B. napus.


Asunto(s)
Brassica napus/fisiología , Lacasa/genética , Estrés Fisiológico , Secuenciación Completa del Genoma/métodos , Secuencias de Aminoácidos , Brassica napus/enzimología , Brassica napus/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lacasa/química , MicroARNs/genética , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica , ARN de Planta/genética , Análisis de Secuencia de ARN
15.
Mol Genet Genomics ; 293(6): 1421-1435, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29974306

RESUMEN

Seed aging is an inevitable problem in the germplasm conservation of oil crops. Thus, clarifying the genetic mechanism of seed aging is important for rapeseed breeding. In this study, Brassica napus seeds were exposed to an artificial aging environment (40 °C and 90% relative humidity). Using a population of 172 recombinant inbred lines, 13 QTLs were detected on 8 chromosomes, which explained ~ 9.05% of the total phenotypic variation. The QTLs q2015AGIA-C08 and q2016AGI-C08-2 identified in the two environments were considered the same QTL. After artificial aging, lower germination index, increased relative electrical conductivity, malondialdehyde and proline content, and reduced soluble sugar, protein content and antioxidant enzyme activities were detected. Furthermore, seeds of extreme lines that were either left untreated (R0 and S0) or subjected to 15 days of artificial aging (R15 and S15) were used for transcriptome sequencing. In total, 2843, 1084, 429 and 1055 differentially expressed genes were identified in R15 vs. R0, S15 vs. S0, R0 vs. S0 and R15 vs. S15, respectively. Through integrated QTL mapping and RNA-sequencing analyses, seven genes, such as BnaA03g37460D, encoding heat shock transcription factor C1, and BnaA03g40360D, encoding phosphofructokinase 4, were screened as candidate genes involved in seed aging. Further researches on these candidate genes could broaden our understanding of the regulatory mechanisms of seed aging.


Asunto(s)
Envejecimiento/genética , Brassica napus/genética , Germinación/genética , Sitios de Carácter Cuantitativo , Semillas/genética , Brassica napus/crecimiento & desarrollo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Análisis por Micromatrices , Semillas/crecimiento & desarrollo
16.
Int J Mol Sci ; 19(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748489

RESUMEN

MicroRNAs (miRNAs) have important roles in regulating stress-response genes in plants. However, identification of miRNAs and the corresponding target genes that are induced in response to cadmium (Cd) stress in Brassica napus remains limited. In the current study, we sequenced three small-RNA libraries from B. napus after 0 days, 1 days, and 3 days of Cd treatment. In total, 44 known miRNAs (belonging to 27 families) and 103 novel miRNAs were identified. A comprehensive analysis of miRNA expression profiles found 39 differentially expressed miRNAs between control and Cd-treated plants; 13 differentially expressed miRNAs were confirmed by qRT-PCR. Characterization of the corresponding target genes indicated functions in processes including transcription factor regulation, biotic stress response, ion homeostasis, and secondary metabolism. Furthermore, we propose a hypothetical model of the Cd-response mechanism in B. napus. Combined with qRT-PCR confirmation, our data suggested that miRNAs were involved in the regulations of TFs, biotic stress defense, ion homeostasis and secondary metabolism synthesis to respond Cd stress in B. napus.


Asunto(s)
Brassica napus/genética , Cadmio/toxicidad , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta/genética , MicroARNs/metabolismo
17.
Int J Mol Sci ; 19(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072649

RESUMEN

NODULE-INCEPTION-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in responses to nitrogen deficiency. However, the evolutionary relationships and characteristics of NLP family genes in Brassica napus are unclear. In this study, we identified 31 NLP genes in B. napus, including 16 genes located in the A subgenome and 15 in the C subgenome. Subcellular localization predictions indicated that most BnaNLP proteins are localized to the nucleus. Phylogenetic analysis suggested that the NLP gene family could be divided into three groups and that at least three ancient copies of NLP genes existed in the ancestor of both monocots and dicots prior to their divergence. The ancestor of group III NLP genes may have experienced duplication more than once in the Brassicaceae species. Three-dimensional structural analysis suggested that 14 amino acids in BnaNLP7-1 protein are involved in DNA binding, whereas no binding sites were identified in the two RWP-RK and PB1 domains conserved in BnaNLP proteins. Expression profile analysis indicated that BnaNLP genes are expressed in most organs but tend to be highly expressed in a single organ. For example, BnaNLP6 subfamily members are primarily expressed in roots, while the four BnaNLP7 subfamily members are highly expressed in leaves. BnaNLP genes also showed different expression patterns in response to nitrogen-deficient conditions. Under nitrogen deficiency, all members of the BnaNLP1/4/5/9 subfamilies were upregulated, all BnaNLP2/6 subfamily members were downregulated, and BnaNLP7/8 subfamily members showed various expression patterns in different organs. These results provide a comprehensive evolutionary history of NLP genes in B. napus, and insight into the biological functions of BnaNLP genes in response to nitrogen deficiency.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Brassica napus/química , Genes de Plantas , Genoma de Planta , Modelos Moleculares , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Alineación de Secuencia , Factores de Transcripción/química
18.
Theor Appl Genet ; 130(9): 1961-1973, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28634809

RESUMEN

KEY MESSAGE: Candidate genes associated with lignin and lodging traits were identified by combining phenotypic, genotypic, and gene expression data in B. napus. Brassica napus is one of the world's most important oilseed crops, but its yield can be dramatically reduced by lodging, bending, and falling of its vertical stems. Lignin has been shown to contribute to stem mechanical strength. In this study, we found that the syringyl/guaiacyl (S/G) monolignol ratio exhibits a significant negative correlation with disease and lodging resistance. A total of 92 and 50 SNP and SSR loci, respectively, were found to be significantly associated with five traits, breaking force, breaking strength, lodging coefficient, acid detergent lignin content, and the S/G monolignol ratio using GWAS. To identify novel genes involved in lignin biosynthesis, transcriptome sequencing of high- (H) and low (L)-ADL content accessions was performed. The up-regulated genes were mainly involved in glycoside catabolic processes (especially glucosinolate catabolism) and cell wall biogenesis, while down-regulated genes were involved in glucosinolate biosynthesis, indicating that crosstalk exists between glucosinolate metabolic processes and lignin biosynthesis. Integrating this differential expression with the GWAS analysis, we identified four candidate genes regulating lignin, including glycosyl hydrolase (BnaA01g00480D), CYT1 (BnaA04g22820D), and two encoding transcription factors, SHINE1 (ERF family) and DAR6 (LIM family). This study provides insight into the genetic control of lodging and lignin in B. napus.


Asunto(s)
Brassica napus/genética , Lignina/biosíntesis , Brassica napus/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Genética de Población , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
19.
Plant Biotechnol J ; 14(6): 1368-80, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26563848

RESUMEN

Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.


Asunto(s)
Ascomicetos/fisiología , Brassica napus/genética , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/genética , Brassica napus/metabolismo , Brassica napus/microbiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Familia de Multigenes , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Polimorfismo de Nucleótido Simple , Transcriptoma
20.
BMC Plant Biol ; 15: 91, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25888376

RESUMEN

BACKGROUND: Rapeseed (B. napus, AACC, 2n = 38) is one of the most important oil seed crops in the world, it is also one of the most common oil for production of biodiesel. Its oil is a mixture of various fatty acids and dissection of the genetic network for fatty acids biosynthesis is of great importance for improving seed quality. RESULTS: The genetic basis of fatty acid biosynthesis in B. napus was investigated via quantitative trail locus (QTL) analysis using a doubled haploid (DH) population with 202 lines. A total of 72 individual QTLs and a large number pairs of epistatic interactions associated with the content of 10 different fatty acids were detected. A total of 234 homologous genes of Arabidopsis thaliana that are involved in fatty acid metabolism were found within the confidence intervals (CIs) of 47 QTLs. Among them, 47 and 15 genes homologous to those of B. rapa and B. oleracea were detected, respectively. After the QTL mapping, the epistatic and the candidate gene interaction analysis, a potential regulatory pathway controlling fatty acid biosynthesis in B. napus was constructed, including 50 enzymes encoded genes and five regulatory factors (LEC1, LEC2, FUS3, WRI1 and ABI3). Subsequently, the interaction between these five regulatory factors and the genes involved in fatty acid metabolism were analyzed. CONCLUSIONS: In this study, a potential regulatory pathway controlling the fatty acid was constructed by QTL analysis and in silico mapping analysis. These results enriched our knowledge of QTLs for fatty acids metabolism and provided a new clue for genetic engineering fatty acids composition in B. napus.


Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Ácidos Grasos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA