Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7836): 71-76, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230334

RESUMEN

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene-a material composed of only carbon atoms-exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

2.
J Am Chem Soc ; 146(21): 14864-14874, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754389

RESUMEN

The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.

3.
Small ; 20(14): e2306295, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992255

RESUMEN

Dual-atom catalysts exhibit higher reactivity and selectivity than the single-atom catalysts. The pyrolysis of bimetal salt precursors is the most typical method for synthesizing dual-atomic catalysts; however, the finiteness of bimetal salts limits the variety of dual-atomic catalysts. In this study, a confined synthesis strategy for synthesizing dual-atomic catalysts is developed. Owing to the in situ synthesis of zeolitic imidazolate frameworks in the pores of covalent organic frameworks (COFs), the migration and aggregation of metal atoms are suppressed adequately during the pyrolysis process. The resultant catalyst contains abundant Zn─Co dual atomic sites with 2.8 wt.% Zn and 0.5 wt.% Co. The catalyst exhibits high reactivity toward oxygen reduction reaction with a half-wave potential of 0.86 V, which is superior to that of the commercial Pt/C catalyst. Theoretical calculations reveal that the Zn atoms in the Zn─Co dual atomic sites promote the formation of intermediate OOH*, and thus contribute to high catalytic performance. This study provides new insights into the design of dual-atom catalysts using COFs.

4.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369767

RESUMEN

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Asunto(s)
Glycine max , Indoles , Raíces de Plantas , Estrés Salino , Streptomyces , Glycine max/fisiología , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Streptomyces/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Indoles/metabolismo , Tolerancia a la Sal , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
5.
Chemistry ; 30(15): e202303688, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38102885

RESUMEN

Covalent organic frameworks (COFs) are porous organic materials with well-defined and uniform structure. The material is an excellent candidate as a solid adsorbent for iodine adsorption. In the present study, we report the synthesis of COF with porphyrin moiety, TF-TA-COF, by solvothermal reaction, which was characterized by XRD, solid-state 13 C NMR, IR, TGA, and nitrogen adsorption-desorption analysis. TF-TA-COF showed a high specific surface area of 443 m2 g-1 , and exhibited good adsorption performance for iodine vapor, with an adsorption capacity of 2.74 g g-1 . XPS and Raman spectrum indicated that a hybrid of physisorption and chemisorption took place between host COF and iodine molecules. The electric properties of iodine-loaded TF-TA-COF were also studied. After doped with iodine, the conductivity of the material increased by more than 5 orders of magnitude. The photoconductivity of I2 -doped COF was also studied and TF-TA-COF showed doping-enhanced photocurrent generation.

6.
Reprod Biomed Online ; 48(4): 103685, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38324980

RESUMEN

RESEARCH QUESTION: What role does programmed cell death 4 (PDCD4) play in premature ovarian insufficiency (POI)? DESIGN: A PDCD4 gene knockout (PDCD4-/-) mouse model was constructed, a POI mouse model was established similar to human POI with 4-vinylcyclohexene dioxide (VCD), a PDCD4-overexpressed adenovirus was designed and the regulatory role in POI in vitro and in vivo was investigated. RESULTS: PDCD4 expression was significantly increased in the ovarian granulosa cells of patients with POI (P ≤ 0.002 protein and mRNA) and mice with VCD-induced POI (P < 0.001 protein expression in both mouse ovaries and granulosa cells). In POI-induced mice model, PDCD4 knockouts significantly increased anti-Müllerian hormone, oestrodiol and numbers of developing follicles, and the PI3K-AKT-Bcl2/Bax signalling pathway is involved in it. CONCLUSION: The expression and regulation of PDCD4 significantly affects the POI pathology in a mouse model. This effect is closely related to the regulation of Bcl2/Bax and the activation of the PI3K-AKT signalling pathway.


Asunto(s)
Ciclohexenos , Insuficiencia Ovárica Primaria , Animales , Femenino , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasas/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN/genética
7.
Phys Chem Chem Phys ; 26(7): 6189-6195, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305045

RESUMEN

Magnetic skyrmions and their effective manipulations are promising for the design of next-generation information storage and processing devices, due to their topologically protected chiral spin textures and low energy cost. They, therefore, have attracted significant interest from the communities of condensed matter physics and materials science. Herein, based on density functional theory (DFT) calculations and micromagnetic simulations, we report the spontaneous 2 nm-diameter magnetic skyrmions in the monolayer CuCrP2Te6 originating from the synergistic effect of broken inversion symmetry and strong Dzyaloshinskii-Moriya interactions (DMIs). The creation and annihilation of magnetic skyrmions can be achieved via the ferroelectric to anti-ferroelectric (FE-to-AFE) transition, due to the variation of the magnetic parameter D2/|KJ|. Moreover, we also found that the DMIs and Heisenberg isotropic exchange can be manipulated by bi-axial strain, to effectively enhance skyrmion stability. Our findings provide feasible approaches to manipulate the skyrmions, which can be used for the design of next-generation information storage devices.

8.
BMC Cardiovasc Disord ; 24(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166569

RESUMEN

BACKGROUND: Aslanger's pattern in electrocardiogram (ECG) indicates that patients may have acute inferior myocardial infarction(AMI) with concomitant critical stenoses on other coronary arteries, which needs to be evaluated the timing of revascularization as risk equivalents of ST elevation myocardial infarction(STEMI). CASE PRESENTATION: The patient was a 62-year-old male with chief complaint of intermittent exertional subxiphoid pain for 20 days from 30th June. One day after the last episode (19th July), the 18-lead electrocardiogram showed ST segment elevation of 0.05-0.1mV in lead III, ST segment depression in leads I, avL, and V2-V6, T wave inversion with positive terminal vector in lead V4-V5, and positive T wave in lead V6, which indicated Aslanger's pattern. With increased Troponin I (0.162ng/mL, 0-0.02), The patient was diagnosed as acute non-ST-segment elevation myocardial infarction (NSTEMI) and admitted to coronary ward on 20th July. The coronary angiography showed 95% stenosis in the distal left main coronary artery (LM) to the ostium of the left anterior descending artery (LAD), 90% stenosis in the proximal segment of the LAD, and 80% stenosis in the middle segment of the LAD, and TIMI blood flow was graded score 2. Three drug-eluting stents were implanted at the lesions. The patient's ECG returned close to normal one month after revascularization. CONCLUSION: We presented an acute coronary syndrome case whose ECG showed with Aslanger's pattern (i.e., isolated ST-segment elevation in lead III, associated ST-segment depression in lead V4-V6 with positive T wave/terminal vector, and greater ST-segment elevation in lead V1 than in lead V2), and was confirmed severe stenosis of the LM and the proximal segment of the LAD via coronary angiography. In clinical practice, especially in the emergency, patients with ECG presenting Aslanger's pattern should be urgently evaluated with prompt treatment, and the timing of emergency coronary angiography and revascularization should be evaluated to avoid adverse outcomes caused by delayed treatment.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Masculino , Humanos , Persona de Mediana Edad , Constricción Patológica , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Infarto del Miocardio sin Elevación del ST/diagnóstico por imagen , Infarto del Miocardio sin Elevación del ST/etiología , Angiografía Coronaria , Electrocardiografía , Arritmias Cardíacas
9.
Climacteric ; 27(3): 227-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597210

RESUMEN

A growing number of people identify as transgender and gender non-binary in the USA and worldwide. Concomitantly, an increasing number of patients are receiving gender-affirming hormone therapy (GAHT) to achieve gender congruence. GAHT has far-ranging effects on clinical and subclinical markers of cardiovascular risk. Transgender patients also appear to be at higher risk for cardiovascular diseases compared to their cisgender peers and the impact of gender-affirming therapy on cardiovascular health is unclear. Studies on the effect of GAHT on cardiovascular outcomes are confounded by differences in GAHT regimens and methodological challenges in a diverse and historically hard-to-reach population. Current cardiovascular guidelines do not incorporate gender identity and hormone status into risk stratification and clinical decision-making. In this review, we provide an overview on the cardiometabolic impact and clinical considerations of GAHT for cardiovascular risk in transgender patients.


Asunto(s)
Enfermedades Cardiovasculares , Personas Transgénero , Humanos , Enfermedades Cardiovasculares/prevención & control , Femenino , Masculino , Terapia de Reemplazo de Hormonas/efectos adversos , Adulto , Procedimientos de Reasignación de Sexo/efectos adversos
10.
BMC Anesthesiol ; 24(1): 134, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589819

RESUMEN

BACKGROUND: Dexmedetomidine has arousal sedation and analgesic effects. We hypothesize that epidural dexmedetomidine in single-dose combined with ropivacaine improves the experience of parturient undergoing cesarean section under epidural anesthesia. This study is to investigate the effect of 0.5 µg/kg epidural dexmedetomidine combined with epidural anesthesia (EA) in parturients undergoing cesarean section. METHODS: A total of 92 parturients were randomly divided into Group R (receiveing epidural ropivacaine alone) Group RD (receiveing epidural ropivacaine with 0.5 µg/kg dexmedetomidine). The primary outcome and second outcome will be intraoperative NRS pain scores and Ramsay Sedation Scale. RESULTS: All 92 parturients were included in the analysis. The NRS were significantly lower in Group RD compared to Group R at all observation timepoint (P > 0.05). Higher Ramsay Sedation Scale was found in Group RD compared to Group R (P < 0.001). No parturient has experienced sedation score of 4 and above. No significant difference regarding the incidence of hypotension, bradycardia and nausea or vomiting, Apgar scores and the overall satisfaction with anesthesia was found between Group R and Group RD (P > 0.05). CONCLUSION: Epidural dexmedetomidine of 0.5 µg/kg added slightly extra analgesic effect to ropivacaine in EA for cesarean section. The sedation of 0.5 µg/kg epidural dexmedetomidine did not cause mother-baby bonding deficit. Satisfaction with anesthesia wasn't significantly improved by epidural dexmedetomidine of 0.5 µg/kg. No additional side effect allows larger dose of epidural dexmedetomidine attempt. TRIAL REGISTRATION: This study was registered at www.chictr.org.cn (ChiCTR2000038853).


Asunto(s)
Anestesia Epidural , Dexmedetomidina , Femenino , Humanos , Embarazo , Analgésicos/uso terapéutico , Anestesia Epidural/efectos adversos , Anestésicos Locales , Cesárea/efectos adversos , Dolor/tratamiento farmacológico , Ropivacaína
11.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894064

RESUMEN

Wire-arc additive manufacturing (WAAM) is favored by the industry for its high material utilization rate and low cost. However, wire-arc additive manufacturing of lattice structures faces problems with forming accuracy such as broken rod and surface morphology defects, which cannot meet the industrial demand. This article innovatively combines the melt pool stress theory with visual perception algorithms to visually study the force balance of the near-suspended melt pool to predict the state of the melt pool. First, the method for melt pool segmentation was studied. The results show that the optimized U-net achieved high accuracy in melt pool segmentation tasks, with accuracies of 98.18%, MIOU 96.64%, and Recall 98.34%. In addition, a method for estimating melt pool force balance and predicting normal, sagging, and collapsing states of the melt pool is proposed. By combining experimental testing with computer vision technology, an analysis of the force balance of the melt pool during the inclined rod forming process was conducted, showing a prediction rate as high as 90% for the testing set. By using this method, monitoring and predicting the state of the melt pool is achieved, preemptively avoiding issues of broken rods during the printing process. This approach can effectively assist in adjusting process parameters and improving welding quality. The application of this method will further promote the development of intelligent unmanned WAAM and provide some references for the development of artificial intelligence monitoring systems in the manufacturing field.

12.
Nano Lett ; 23(23): 10922-10929, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37965921

RESUMEN

Despite its prevalence in experiments, the influence of complex strain on material properties remains understudied due to the lack of effective simulation methods. Here, the effects of bending, rippling, and bubbling on the ferroelectric domains are investigated in an In2Se3 monolayer by density functional theory and deep learning molecular dynamics simulations. Since the ferroelectric switching barrier can be increased (decreased) by tensile (compressive) strain, automatic polarization reversal occurs in α-In2Se3 with a strain gradient when it is subjected to bending, rippling, or bubbling deformations to create localized ferroelectric domains with varying sizes. The switching dynamics depends on the magnitude of curvature and temperature, following an Arrhenius-style relationship. This study not only provides a promising solution for cross-scale studies using deep learning but also reveals the potential to manipulate local polarization in ferroelectric materials through strain engineering.

13.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256261

RESUMEN

Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.


Asunto(s)
Oryza , Humanos , Oryza/genética , Sequías , Fitomejoramiento , Alimentos , Suturas
14.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396836

RESUMEN

Plant cells accumulate osmotic substances (e.g., sugar) to protect cell components and maintain osmotic balance under drought stress conditions. Previous studies found that pOsHAK1:OsFLN2 promotes sugar metabolism and improves the drought tolerance of rice plants under drought stress. This study further evaluated the effect of the ectopic expression of the OsSUT1 gene driven by the OsHAK1 promoter on the sugar transport and drought tolerance of rice. The results showed that the net photosynthetic rate and sucrose phosphate synthase activity of plants expressing the OsSUT1 gene were not significantly different from those of wild-type (WT) rice plants under drought conditions. However, the sucrose transport rate in the phloem increased in the transgenic plants, and the sucrose contents were significantly lower in the leaves but significantly higher in the roots of transgenic plants than those in WT plants. The pOsHAK1:OsSUT1 and pOsHAK1:OsFLN2 transgenic lines had similar rates of long-distance sucrose transport and drought tolerance, which were higher than those of the WT plants. The relative water content of the transgenic plants was higher, while their water loss rate, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents were lower than those of the WT plants. The stress-responsive gene OsbZIP23 and the antioxidant-related gene OsCATB were significantly upregulated in the drought-treated transgenic lines, while the senescence indicator gene SGR and the stress-responsive gene OsNAC2 were down-regulated compared to WT plants. These results showed that promoting the long-distance sugar transport through the expression of pOsHAK1:OsSUT1 could produce an improved drought tolerance effect similar to that of pOsHAK1:OsFLN2, providing an effective way to improve the drought tolerance of cereal crops at the seedling stage.


Asunto(s)
Resistencia a la Sequía , Oryza , Oryza/genética , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
15.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474107

RESUMEN

Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Humanos , Arsénico/metabolismo , Oryza/genética , Contaminantes del Suelo/metabolismo , Fitomejoramiento , Estructuras de las Plantas/metabolismo , Suelo , Grano Comestible/metabolismo
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542486

RESUMEN

Fresh green leaves give off a smell known as "green odor." It has antibacterial qualities and can be used to attract or repel insects. However, a common method for evaluating green odor molecules has never existed. Machine learning techniques are widely used in research to forecast molecular attributes for binary classification. In this work, the green odor molecules were first trained and learned using machine learning methods, and then clustering analysis and molecular docking were performed to further explore their molecular characteristics and mechanisms of action. For comparison, four algorithmic models were employed, MLP performed the best in all metrics, including Accuracy, Precision, Average Precision, Matthews coefficient, and Area under curve. We determined by difference analysis that, in comparison to non-green odor molecules, green odor molecules have a lower molecular mass and fewer electrons. Based on the MLP algorithm, we constructed a binary classification prediction website for green odors. The first application of deep learning techniques to the study of green odor molecules can be seen as a signal of a new era in which green odor research has advanced into intelligence and standardization.


Asunto(s)
Odorantes , Olfato , Simulación del Acoplamiento Molecular , Algoritmos , Aprendizaje Automático
17.
Angew Chem Int Ed Engl ; 63(22): e202404886, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38563659

RESUMEN

The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.

18.
Angew Chem Int Ed Engl ; 63(5): e202317785, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085127

RESUMEN

Covalent organic frameworks (COFs) have been utilized for catalyzing the reduction of carbon dioxide (CO2RR) due to their atomic metal centers and controllable pore channels, which are facilitated by different covalent bonds. However, the exploration of boron-based linkages in these catalytic COFs has been limited owing to potential instability. Herein, we present the construction of boronic ester-linked COFs through nucleophilic substitution reactions in order to catalyze the CO2 RR. The inclusion of abundant fluorine atoms within the frameworks enhances their hydrophobicity and subsequently improves water tolerance and chemical stability of COFs. The content of boron atoms in the COF linkages was carefully controlled, with COFs featuring a higher density of boron atoms exhibiting increased electronic conductivity, enhanced reductive ability, and stronger binding affinity towards CO2 . Consequently, these COFs demonstrate improved activity and selectivity. The optimized COFs achieve the highest activity, achieving a turnover frequency of 1695.3 h-1 and a CO selectivity of 95.0 % at -0.9 V. Operando synchrotron radiation measurements confirm the stability of Co (II) atoms as catalytically active sites. By successfully constructing boronic ester-linked COFs, we not only address potential instability concerns but also achieve exceptional catalytic performance for CO2 RR.

19.
Angew Chem Int Ed Engl ; 63(16): e202319247, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381931

RESUMEN

Binding water molecules to polar sites in covalent organic frameworks (COFs) is inevitable, but the corresponding solvent effects in electrocatalytic process have been largely overlooked. Herein, we investigate the solvent effects on COFs for catalyzing the oxygen reduction reaction (ORR). Our designed COFs incorporated different kinds of nitrogen atoms (imine N, pyridine N, and phenazine N), enabling tunable interactions with water molecules. These interactions play a crucial role in modulating electronic states and altering the catalytic centers within the COFs. Among the synthesized COFs, the one with pyridine N atoms exhibits the highest activity, with characterized by a half-wave potential of 0.78 V and a mass activity of 0.32 A mg-1, which surpass those from other metal-free COFs. Theoretical calculations further reveal that the enhanced activity can be attributed to the stronger binding ability of *OOH intermediates to the carbon atoms adjacent to the pyridine N sites. This work sheds light on the significance of considering solvent effects on COFs in electrocatalytic systems, providing valuable insights into their design and optimization for improved performance.

20.
Angew Chem Int Ed Engl ; 63(20): e202401750, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407379

RESUMEN

The catalytic performance for electrocatalytic CO2 reduction reaction (CO2RR) depends on the binding strength of the reactants and intermediates. Covalent organic frameworks (COFs) have been adopted to catalyze CO2RR, and their binding abilities are tuned via constructing donor-acceptor (DA) systems. However, most DA COFs have single donor and acceptor units, which caused wide-range but lacking accuracy in modulating the binding strength of intermediates. More elaborate regulation of the interactions with intermediates are necessary and challenge to construct high-efficiency catalysts. Herein, the three-component COF with D-A-A units was first constructed by introducing electron-rich diarylamine unit, electron-deficient benzothiazole and Co-porphyrin units. Compared with two-component COFs, the designed COF exhibit elevated electronic conductivity, enhanced reducibility, high efficiency charge transfer, further improving the electrocatalytic CO2RR performance with the faradic efficiency of 97.2 % at -0.8 V and high activity with the partial current density of 27.85 mA cm-2 at -1.0 V which exceed other two-component COFs. Theoretical calculations demonstrate that catalytic sites in three-component COF have suitable binding ability of the intermediates, which are benefit for formation of *COOH and desorption of *CO. This work offers valuable insights for the advancement of multi-component COFs, enabling modulated charge transfer to improve the CO2RR activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA