RESUMEN
Mitochondrial dysfunction occurs in most forms of heart failure. We have previously reported that Tead1, the transcriptional effector of Hippo pathway, is critical for maintaining adult cardiomyocyte function, and its deletion in adult heart results in lethal acute dilated cardiomyopathy. Growing lines of evidence indicate that Hippo pathway plays a role in regulating mitochondrial function, although its role in cardiomyocytes is unknown. Here, we show that Tead1 plays a critical role in regulating mitochondrial OXPHOS in cardiomyocytes. Assessment of mitochondrial bioenergetics in isolated mitochondria from adult hearts showed that loss of Tead1 led to a significant decrease in respiratory rates, with both palmitoylcarnitine and pyruvate/malate substrates, and was associated with reduced electron transport chain complex I activity and expression. Transcriptomic analysis from Tead1-knockout myocardium revealed genes encoding oxidative phosphorylation, TCA cycle, and fatty acid oxidation proteins as the top differentially enriched gene sets. Ex vivo loss of function of Tead1 in primary cardiomyocytes also showed diminished aerobic respiration and maximal mitochondrial oxygen consumption capacity, demonstrating that Tead1 regulation of OXPHOS in cardiomyocytes is cell autonomous. Taken together, our data demonstrate that Tead1 is a crucial transcriptional node that is a cell-autonomous regulator, a large network of mitochondrial function and biogenesis related genes essential for maintaining mitochondrial function and adult cardiomyocyte homeostasis.NEW & NOTEWORTHY Mitochondrial dysfunction constitutes an important aspect of heart failure etiopathogenesis and progression. However, the molecular mechanisms are still largely unknown. Growing lines of evidence indicate that Hippo-Tead pathway plays a role in cellular bioenergetics. This study reveals the novel role of Tead1, the downstream transcriptional effector of Hippo pathway, as a novel regulator of mitochondrial oxidative phosphorylation and in vivo cardiomyocyte energy metabolism, thus providing a potential therapeutic target for modulating mitochondrial function and enhancing cytoprotection of cardiomyocytes.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , Factores de Transcripción/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Proteínas de Unión al ADN/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , TranscriptomaRESUMEN
Cytokine-induced ß-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect ß-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on ß-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected ß-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced ß-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in ß-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for ß-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting ß-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving ß-cell functional mass in T1D.
Asunto(s)
Apoptosis , Citocinas , Células Secretoras de Insulina , FN-kappa B , Transducción de Señal , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , FN-kappa B/metabolismo , Ratones , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Proteína Forkhead Box O1/metabolismo , Ratones Endogámicos NOD , Masculino , Ratones Endogámicos C57BLRESUMEN
The epididymis and efferent ducts play major roles in sperm maturation, transport, concentration and storage by reabsorbing water, ions and proteins produced from seminiferous tubules. Gpr48-null male mice demonstrate reproductive tract defects and infertility. In the present study, we found that estrogen receptor alpha (ERalpha) was dramatically reduced in the epididymis and efferent ducts in Gpr48-null male mice. We further revealed that ERalpha could be upregulated by Gpr48 activation via the cAMP/PKA signaling pathway. Moreover, we identified a cAMP responsive element (Cre) motif located at -1307 to -1300 bp in the ERalpha promoter that is able to interact with Cre binding protein (Creb). In conclusion, Gpr48 participates in the development of the male epididymis and efferent ducts through regulation of ERalpha expression via the cAMP/PKA signaling pathway.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Epidídimo/metabolismo , Receptor alfa de Estrógeno/genética , Receptores Acoplados a Proteínas G/fisiología , Testículo/metabolismo , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Femenino , Técnica del Anticuerpo Fluorescente , Hormona Folículo Estimulante/sangre , Inmunohistoquímica , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
The morphological transformation of adipogenic progenitors into mature adipocytes requires dissolution of actin cytoskeleton with loss of myocardin-related transcription factor (MRTF)/serum response factor (SRF) activity. Circadian clock confers temporal control in adipogenic differentiation, while the actin cytoskeleton-MRTF/SRF signaling transduces extracellular physical niche cues. Here, we define a novel circadian transcriptional control involved in actin cytoskeleton-MRTF/SRF signaling cascade that modulates beige fat thermogenic function. Key components of actin dynamic-MRTF/SRF pathway display circadian regulation in beige fat depot. The core clock regulator, brain and muscle arnt-like 1 (Bmal1), exerts direct transcriptional control of genes within the actin dynamic-MRTF/SRF cascade that impacts actin cytoskeleton organization and SRF activity. Employing beige fat-selective gene-targeting models together with pharmacological rescues, we further demonstrate that Bmal1 inhibits beige adipogenesis and thermogenic capacity in vivo via the MRTF/SRF pathway. Selective ablation of Bmal1 induces beigeing with improved glucose homeostasis, whereas its targeted overexpression attenuates thermogenic induction resulting in obesity. Collectively, our findings identify the clock-MRTF/SRF regulatory axis as an inhibitory mechanism of beige fat thermogenic recruitment with significant contribution to systemic metabolic homeostasis.
Asunto(s)
Adipocitos Beige , Relojes Circadianos , Termogénesis , Actinas/metabolismo , Adipocitos Beige/metabolismo , Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Animales , RatonesRESUMEN
TEAD1 and the mammalian Hippo pathway regulate cellular proliferation and function, though their regulatory function in ß cells remains poorly characterized. In this study, we demonstrate that while ß cell-specific TEAD1 deletion results in a cell-autonomous increase of ß cell proliferation, ß cell-specific deletion of its canonical coactivators, YAP and TAZ, does not affect proliferation, suggesting the involvement of other cofactors. Using an improved split-GFP system and yeast two-hybrid platform, we identify VGLL4 and MENIN as TEAD1 corepressors in ß cells. We show that VGLL4 and MENIN bind to TEAD1 and repress the expression of target genes, including FZD7 and CCN2, which leads to an inhibition of ß cell proliferation. In conclusion, we demonstrate that TEAD1 plays a critical role in ß cell proliferation and identify VGLL4 and MENIN as TEAD1 corepressors in ß cells. We propose that these could be targeted to augment proliferation in ß cells for reversing diabetes.
Asunto(s)
Proteínas de Unión al ADN , Células Secretoras de Insulina , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción de Dominio TEA , Proteínas Co-Represoras , Células Secretoras de Insulina/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular , Mamíferos/metabolismoRESUMEN
Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1α. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.
Asunto(s)
Receptor Nuclear Huérfano DAX-1/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Secuencias de Aminoácidos , Receptor Nuclear Huérfano DAX-1/genética , Células HEK293 , Humanos , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Transcripción GenéticaRESUMEN
The SRF/MRTF and upstream signaling cascade play key roles in actin cytoskeleton organization and myocyte development. To date, how this signaling axis may function in brown adipocyte lineage commitment and maturation has not been delineated. Here we report that MRTF-SRF signaling exerts inhibitory actions on brown adipogenesis, and suppressing this negative regulation promotes brown adipocyte lineage development. During brown adipogenic differentiation, protein expressions of SRF, MRTFA/B and its transcription targets were down-regulated, and MRTFA/B shuttled from nucleus to cytoplasm. Silencing of SRF or MRTF-A/MRTF-B enhanced two distinct stages of brown adipocyte development, mesenchymal stem cell determination to brown adipocytes and terminal differentiation of brown adipogenic progenitors. We further demonstrate that the MRTF-SRF axis exerts transcriptional regulations of the TGF-ß and BMP signaling pathway, critical developmental cues for brown adipocyte development. TGF-ß signaling activity was significantly attenuated, whereas that of the BMP pathway augmented by inhibition of SRF or MRTF-A/MRTF-B, leading to enhanced brown adipocyte differentiation. Our study demonstrates the MRTF-SRF transcriptional cascade as a negative regulator of brown adipogenesis, through its transcriptional control of the TGF-ß/BMP signaling pathways.
Asunto(s)
Adipocitos Marrones/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Transcripción Genética/fisiologíaRESUMEN
Adult heart size is determined predominantly by the cardiomyocyte number and size. The cardiomyocyte number is determined primarily in the embryonic and perinatal period, as adult cardiomyocyte proliferation is restricted in comparison to that seen during the perinatal period. Recent evidence has implicated the mammalian Hippo kinase pathway as being critical in cardiomyocyte proliferation. Though the transcription factor, Tead1, is the canonical downstream transcriptional factor of the hippo kinase pathway in cardiomyocytes, the specific role of Tead1 in cardiomyocyte proliferation in the perinatal period has not been determined. Here, we report the generation of a cardiomyocyte specific perinatal deletion of Tead1, using Myh6-Cre deletor mice (Tead1-cKO). Perinatal Tead1 deletion was lethal by postnatal day 9 in Tead1-cKO mice due to dilated cardiomyopathy. Tead1-deficient cardiomyocytes have significantly decreased proliferation during the immediate postnatal period, when proliferation rate is normally high. Deletion of Tead1 in HL-1 cardiac cell line confirmed that cell-autonomous Tead1 function is required for normal cardiomyocyte proliferation. This was secondary to significant decrease in levels of many proteins, in vivo, that normally promote cell cycle in cardiomyocytes. Taken together this demonstrates the non-redundant critical requirement for Tead1 in regulating cell cycle proteins and proliferation in cardiomyocytes in the perinatal heart.
Asunto(s)
Cardiomiopatía Dilatada/mortalidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/genética , Proliferación Celular , Células Cultivadas , Femenino , Eliminación de Gen , Genes Letales , Ratones , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Embarazo , Transducción de Señal , Factores de Transcripción de Dominio TEARESUMEN
Heart disease remains the leading cause of death worldwide, highlighting a pressing need to identify novel regulators of cardiomyocyte (CM) function that could be therapeutically targeted. The mammalian Hippo/Tead pathway is critical in embryonic cardiac development and perinatal CM proliferation. However, the requirement of Tead1, the transcriptional effector of this pathway, in the adult heart is unknown. Here, we show that tamoxifen-inducible adult CM-specific Tead1 ablation led to lethal acute-onset dilated cardiomyopathy, associated with impairment in excitation-contraction coupling. Mechanistically, we demonstrate Tead1 is a cell-autonomous, direct transcriptional activator of SERCA2a and SR-associated protein phosphatase 1 regulatory subunit, Inhibitor-1 (I-1). Thus, Tead1 deletion led to a decrease in SERCA2a and I-1 transcripts and protein, with a consequent increase in PP1-activity, resulting in accumulation of dephosphorylated phospholamban (Pln) and decreased SERCA2a activity. Global transcriptomal analysis in Tead1-deleted hearts revealed significant changes in mitochondrial and sarcomere-related pathways. Additional studies demonstrated there was a trend for correlation between protein levels of TEAD1 and I-1, and phosphorylation of PLN, in human nonfailing and failing hearts. Furthermore, TEAD1 activity was required to maintain PLN phosphorylation and expression of SERCA2a and I-1 in human induced pluripotent stem cell-derived (iPS-derived) CMs. To our knowledge, taken together, this demonstrates a nonredundant, novel role of Tead1 in maintaining normal adult heart function.
Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Proteínas de Unión al ADN/fisiología , Miocitos Cardíacos/citología , Factores de Transcripción/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Dilatada/inducido químicamente , Cardiomiopatía Dilatada/patología , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Noqueados , Miocardio/enzimología , Miocardio/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Retículo Sarcoplasmático/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Transcripción de Dominio TEA , Tamoxifeno/farmacología , Factores de Transcripción/genéticaRESUMEN
Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erbα, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erbα participates in brown fat formation is not known. Here we show that Rev-erbα is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erbα in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erbα in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erbα activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erbα represses key components of the TGF-ß cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erbα in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erbα may offer new avenues for the treatment of obesity and related metabolic disorders.
Asunto(s)
Tejido Adiposo Pardo/crecimiento & desarrollo , Productos del Gen rev/fisiología , Tejido Adiposo Pardo/citología , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BLRESUMEN
CONTEXT: DAX1 (for dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on the X chromosome, gene 1; also called NROB1) mutations are responsible for adrenal failure and hypogonadotropic hypogonadism in patients with adrenal hypoplasia congenita (AHC), through a loss of trans-repression of SF-1 (for steroidogenic factor-1)-mediated StAR (for steroidogenic acute regulatory protein) and LHbeta transcriptional activities and a reduction of GnRH expression. The correlation of clinical features with genetic and functional alterations of the gene was investigated in detail in AHC patients. OBJECTIVE: The present study aimed at identifying DAX1 mutations in Chinese AHC patients and investigating the functional defects of detected novel mutations. PATIENTS AND METHODS: Nine patients with AHC were recruited from eight families. DAX1 mutations were screened, and the transcriptional activities of the identified mutations were assessed in vitro. RESULTS: DAX1 mutations were detected in all nine patients enrolled in the study, with eight different mutations. Among the latter, seven are novel mutations, including two missense (L262P and C368F), one nonsense (Q222X), and four frame-shift (637delC, 652_653delAC, 973delC, and 774_775insCC) mutations. The functional studies showed that the mutant DAX1 was impaired by nuclear localization, loss of trans-repression of StAR and LHbeta transcriptional activities, and reduction of GnRH expression. CONCLUSION: These findings provide insight into the molecular events by which DAX1 mutations influence the hypothalamus-pituitary-gonadal and hypothalamus-pituitary-adrenal axis and lead to AHC and hypogonadotropic hypogonadism.