Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949284

RESUMEN

Layered manganese transition metal oxides, such as NaMnO2, have attracted great interest due to the low cost and high capacity. However, complex phase transitions in NaMnO2 lead to poor cycling stability. The introduction of Li doping has been confirmed to improve the performance of NaMnO2. O3-type NaLi1/3Mn2/3O2 (NLMO), synthesized in 2021, has demonstrated excellent electrochemical performance. Notably, irreversible Li interlayer migration (Li migrates from the transition metal layer to the alkali metal layer) has been observed during cycling, which is related to the electrochemical performance. Therefore, it is crucial to understand the mechanism underlying Li interlayer migration in O3-NLMO. However, the environment of Li interlayer migration on cycling is complex and involves interlayer spacing, Na-ion concentration, the degree of O-ion oxidation, and phase transition. Here, in this work, we utilized the first-principles method to decouple the coupling factors influencing the Li interlayer migration. Through analyzing the impact of the single-factor on Li interlayer migration, we aim to identify the crucial factors affecting this process. Our results show that a decrease in Na-ion concentration and an increase in O-ion oxidation degree promote the Li interlayer migration, while the O-P phase transition suppresses the Li interlayer migration. Interlayer spacing was found to play a less influential role in Li interlayer migration. Our investigations provide effective strategies for the subsequent regulation of Li interlayer migration.

2.
Opt Express ; 31(5): 8414-8427, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859956

RESUMEN

We study the phase sensitivity of an SU(1,1) interferometer with photon loss by using three different photon operations schemes, i.e., performing photon-addition operation on the input port of the SU(1,1) interferometer (Scheme A), the interior of SU(1,1) interferometer (Scheme B), and both of them (Scheme C). We compare the performance of the three schemes in phase estimation by performing the same times of photon-addition operation to the mode b. The results show that Scheme B improves the phase sensitivity best in ideal case, and Scheme C performs well against internal loss, especially in the case of strong loss. All the three schemes can beat the standard quantum limit in the presence of photon loss, but Scheme B and Scheme C can break through the standard quantum limit in a larger loss range.

3.
Opt Express ; 31(20): 32935-32952, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859085

RESUMEN

Quantum key distribution (QKD) with continuous variable (CV) is an effective method for achieving the high key rate, but is also limited to a short transmission distance. To overcome this limitation, some solutions have been proposed, including non-Gaussian operations, such as photon addition and photon subtraction using ideal photon source and number-resolving detection. Here we consider the effect of non-Gaussian operation for realistic photon source and ideal on-off photon detection. In the realistic case, it is shown that the performance of CVQKD can not be improved by both photon-subtraction/addition on the right side before the entangled source reaches the channel and photon-subtraction on the left side preceding the entangled source to the sender Alice before performing heterodyne detection, but be enhanced by the photon addition on the left side in a long distance case. These results may provide a useful reference for quantum information with continuous variable.

4.
J Chem Phys ; 158(14): 144704, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061471

RESUMEN

The structural, mechanical, and electronic properties of Ni-Co-based layered transition oxide LiNixCo1-xO2 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) (LNCO) have been investigated using the first-principles method. The results show that the effect of Ni/Co mixing on the structural property is slight. For the case of the mechanical property, the elastic constant, elastic modulus, such as Young's modulus (Y), Poisson's ratio (v), Pugh's ratio (B/G), and Cauchy pressure (C') of LNCO have been carefully analyzed based on the strain-energy method. The results demonstrate that the mechanical strength of LNCO materials is weaker than that of pure LiCoO2 (LCO) and LiNiO2 (LNO). However, the B/G ratio and Poisson's ratio of LNCO are greater than that of the pure LCO and LNO, which means that Ni/Co mixing can improve the ductility of pure LCO and LNO. In addition, Cauchy pressure and anisotropy are also discussed, and as cathode materials, LNCO still exhibits good electrical conductivity. Our results provide a feasible way to realize mechanical property modulation by Ni-Co-based layered transition metal oxides LCO. Furthermore, our study is also helpful to reveal the formation mechanism of intra-lattice microcracks in electrode materials.

5.
Opt Express ; 30(21): 38178-38193, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258386

RESUMEN

The phase sensitivity of SU(1,1) interferometer is investigated using a coherent state and an m-coherent superposition squeezed vacuum states as inputs and the intensity detection. Photon-subtraction, photon-addition and photon superposition are three special cases. Both ideal and realistic cases are considered. It is shown that the coefficient s of coherent superposition can modulate the performance of phase sensitivity, especially in a small squeezing region. Even in the presence of photon losses, the three-kind of non-Gaussian operations can achieve the improvement of measure precision, and the photon addition presents the best robustness compared to the photon subtraction and coherent superposition. For small squeezing, the first-order non-Gaussian operation may be the most preferred in improving phase sensitivity if considering the limitations of experimental conditions. Our results may be helpful for the practical application of quantum information.

6.
Entropy (Basel) ; 24(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36141096

RESUMEN

Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of the investigated subjects relied on the deformation parameter κ and OAM parameter η. For both Langmuir and ion-acoustic waves, dispersion was enhanced with increased κ, while the Landau damping was suppressed. Conversely, both the dispersion and Landau damping were depressed by OAM. Moreover, the results coincided with the straight propagating plane waves in a Maxwellian plasma system when κ=0 and η→∞. It was expected that the present results would give more insight into the trapping and transportation of plasma particles and energy.

7.
Phys Chem Chem Phys ; 22(16): 8864-8869, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32285889

RESUMEN

A first-principles calculation was performed to investigate the switchable CO2 capture on χ3-borophene by injecting/removing the extra electrons. The results show that the CO2 adsorption energy on the neutral χ3-borophene is 0.150 eV. After extra 2.5 e are injected, the adsorption energy is raised up to 0.802 eV, showing a significant enhancement with the change from the physical adsorption to chemical adsorption. Furthermore, both the CO2 capture and release processes are exothermic reactions involving injecting/removing extra electrons. χ3-borophene possesses a metallic electronic structure, which is conducive to the injection of extra electrons. The minimum charge density for CO2 capture on the negatively charged χ3-borophene is 1.6 × 1014 e cm-2. The CO2 capture capacity of χ3-borophene is 4.09 × 1014 cm-2. Finally, we study the selectivity of negatively charged χ3-borophene. The results show that the negatively-charged χ3-borophene possesses a high selectivity for CO2 from its mixtures with CO, CH4, NH3, N2, H2S, and H2. χ3-borophene is a new promising charge-modulated switchable CO2 capture material with good stability, high CO2 capture capacity, high selectivity, and excellent electrical conductivity.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041113, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19518179

RESUMEN

The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.

9.
ACS Nano ; 8(12): 12734-40, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25493328

RESUMEN

Reversible molecular switches with molecular orientation as the information carrier have been achieved on individual phthalocyanine (H2Pc) molecules adsorbed on a Cu(100) surface at room temperature. Scanning tunneling microscopy (STM) imaging directly demonstrates that H2Pc molecules can be controlled to move along the [011] or [011̅] surface direction of the Cu(100) surface, and the orientation of H2Pc molecules can also be switched between two angles of ±28° with respect to the [011] surface direction by a lateral manipulation. Owing to the highly efficient control over the adsorption site and orientation of H2Pc adsorbed on the Cu(100) surface by lateral manipulation, a pyramidal array formed by 10 H2Pc molecules has been constructed on the Cu surface as a prototype of binary memory, and every molecule within such a molecular array can be individually and reversibly controlled by a STM tip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA