Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 23(8): e52280, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35703725

RESUMEN

Ferroptosis is an iron-dependent form of non-apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high-iron diet than wild-type mice. Ferrous iron (Fe2+ ) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine-based "turn-on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+ . Probe1 displays high selectivity towards Fe2+ , and exhibits a stable response for Fe2+ with a concentration of 20 µM in tissue. Our data thus show that PPARα activation alleviates iron overload-induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis-related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , PPAR alfa , Animales , Ferroptosis/genética , Colorantes Fluorescentes , Hierro/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/patología , Hígado/metabolismo , Ratones , Ratones Noqueados , PPAR alfa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa
2.
Environ Res ; 247: 118266, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253193

RESUMEN

Based on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property. The high separation efficiency of dye/salts was achieved through 2D material MgAl-LDH, which was proved by separation selectivity ɑ. The compatibility of good self-healing performance and penetration performance was obtained by 2D material MgAl-LDH, which was proved by the penetration and self-healing performance. Morever, the membrane illustrated excellent both permeability and dye/sals separation efficiency, just like the permeate flux, the retention performance of sodium sulfate in methyl blue/sodium sulfate solution, the retention performance of Na2SO4 in methyl blue/Na2SO4 solution, the retention rate of methyl blue were 99.1 L/m2h, 12.5%, 7.9%, 97.7%, respectively. The results of pollution index and contact angle also proved that the membrane had anti-pollution performance.


Asunto(s)
Bencenosulfonatos , Colorantes , Polímeros , Sales (Química) , Sulfonas , Colorantes/química , Sulfatos
3.
Med Sci Monit ; 30: e943196, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347712

RESUMEN

BACKGROUND Ankylosing spondylitis (AS), a chronic inflammatory disease predominantly causing back pain, affects up to 0.5% of the global population, more commonly in males. Frequently undiagnosed in early stages, AS is often associated with comorbid depression and anxiety, imposing significant healthcare burdens. Despite available pharmaceutical treatments, exercise therapy (ET) has emerged as an effective, side-effect-free alternative, particularly for managing AS-induced back pain. This study aims to explore the research trends in ET for treating AS back pain from 2004-2023. MATERIAL AND METHODS A comprehensive analysis of 437 articles, sourced from the Science Citation Index-Expanded within the Web of Science Core Collection, was conducted using CiteSpace 6.2.R5. This study spanned from 2004 to October 15, 2023, examining publications, authors, institutions, and keywords to assess keyword co-occurrences, temporal progressions, and citation bursts. RESULTS Research interest in ET for AS began escalating around 2008 and has since shown steady growth. The USA emerged as a significant contributor, with Van der Heijde, Desiree, and RUDWALEIT M being notable authors. Key institutions include Assistance Publique Hopitaux Paris and UDICE-French Research Universities, with ANN RHEUM DIS being the most influential journal. The field's evolution is marked by interdisciplinary integration and branching into various sub-disciplines. CONCLUSIONS Exercise therapy for AS-induced back pain is a growing research area, necessitating further exploration in clinical management and rehabilitation strategies. The relationship between ET and osteoimmunological mechanisms remains a focal point for future research, with a trend towards personalized and interdisciplinary treatment approaches.


Asunto(s)
Espondilitis Anquilosante , Masculino , Humanos , Espondilitis Anquilosante/terapia , Terapia por Ejercicio , Ejercicio Físico , Dolor de Espalda/terapia , Bibliometría
4.
Mol Carcinog ; 62(5): 641-651, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36789977

RESUMEN

Oral squamous cell carcinoma (OSCC) has emerged as the most prevailing oral malignancy worldwide, characterized by cervical solid lymph node metastasis and strong local invasiveness. Overexpression of Transcription Factor AP-2 alpha (TFAP2A) is observed in a significant proportion of OSCC cases. In this study, we aimed to elucidate the function of TFAP2A in the progression of OSCC and the related molecular signaling pathways. The role of RELA was predicted using bioinformatics analysis. The mRNA abundances of RELA, TFAP2A, and ß-catenin were assessed by Western blot and quantitative real-timePCR. The relationship between RELA, TFAP2A, and ß-catenin and their correlation with clinicopathological characteristics of OSCC was evaluated. The target of RELA and TFAP2A was identified by the chromatin immunoprecipitation as well as luciferase reporter assay. The colony formation assay and MTS assay were performed to determine the proliferative level of OSCC cells. OSCC cell motility was determined by Transwell assay and wound-healing assay. The protein expressions of epithelial-mesenchymal transition-associated factors were evaluated by Western blot. The expressions of RELA and TFAP2A were elevated in OSCC, and their expressions displayed a positive correlation. The expression levels of RELA and TFAP2A were found to be associated with TNM staging and lymphatic metastasis of OSCC patients. RELA upregulation promoted OSCC progression, as manifested by increased levels of proliferation, invasion, and migration of OSCC cells. We also demonstrated that RELA was directly bound to the promoter of TFAP2A transcription, which activated multiple malignant and metastatic phenotypes. Furthermore, TFAP2A activated the Wnt/ß-catenin signaling by targeting the promoter regions of ß-catenin. The study found that RELA is critical for promoting the progression of OSCC via the RELA-TFAP2A-Wnt/ß-catenin signaling pathway. The RELA-TFAP2A-Wnt/ß-catenin signaling pathway is a potential target for reducing the aggressiveness of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Factor de Transcripción ReIA , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Vía de Señalización Wnt/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003574

RESUMEN

Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.


Asunto(s)
Ananas , Flavonas , Frutas/genética , Frutas/metabolismo , Transcriptoma , Ananas/metabolismo , Lignina/metabolismo , Metabolómica , Flavonoides/metabolismo , Flavonas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138962

RESUMEN

Exogenous ethylene is commonly utilized to initiate flower induction in pineapple (Ananas comosus (L.) Merr.). However, the molecular mechanisms and metabolic changes involved are not well understood. In this study, we explored the genetic network and metabolic shifts in the 'Comte de Paris' pineapple variety during ethylene-induced flowering. This was achieved through an integrative analysis of metabolome and transcriptome profiles at vegetative shoot apexes (0 d after ethephon treatment named BL_0d), the stage of bract primordia (8 d after ethephon treatment named BL_8d), stage of flower primordia (18 d after ethephon treatment named BL_18d), and the stage of stopped floret differentiation (34 d after ethephon treatment named BL_34d). We isolated and identified 804 metabolites in the pineapple shoot apex and inflorescence, categorized into 24 classes. Notably, 29, 31, and 46 metabolites showed significant changes from BL_0d to BL_8d, BL_8d to BL_18d, and BL_18d to BL_34d, respectively. A marked decrease in indole was observed, suggesting its role as a characteristic metabolite during flower induction. Transcriptomic analysis revealed 956, 1768, and 4483 differentially expressed genes (DEGs) for BL_0d vs. BL_8d, BL_8d vs. BL_18d, and BL_18d vs. BL_34d, respectively. These DEGs were significantly enriched in carbohydrate metabolism and hormone signaling pathways, indicating their potential involvement in flower induction. Integrating metabolomic and transcriptomic data, we identified several candidate genes, such as Agamous-Like9 (AGL9), Ethylene Insensitive 3-like (ETIL3), Apetala2 (AP2), AP2-like ethylene-responsive transcription factor ANT (ANT), and Sucrose synthase 2 (SS2), that play potentially crucial roles in ethylene-induced flower induction in pineapple. We also established a regulatory network for pineapple flower induction, correlating metabolites and DEGs, based on the Arabidopsis thaliana pathway as a reference. Overall, our findings offer a deeper understanding of the metabolomic and molecular mechanisms driving pineapple flowering.


Asunto(s)
Ananas , Transcriptoma , Ananas/genética , Ananas/metabolismo , Redes Reguladoras de Genes , Etilenos/metabolismo , Flores/genética , Flores/metabolismo , Metaboloma , Regulación de la Expresión Génica de las Plantas
7.
Environ Res ; 204(Pt C): 112177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34717945

RESUMEN

Reverse thermally induced separation (RTIPS) was used to obtain a separation membrane with a better internal structure for a higher water flux and a surface that could easily form a hydration layer. In comparison to the traditional modification method, this work focused on the aspect that the internal structure obtained by changing the membrane-making method provided easier adhesion conditions for the dopamine/TiO2 hybrid nanoparticles (DA/TiO2 HNPs) obtained by biomimetic mineralization. It provided a basis for exploring the variation in adhesion with the water bath temperature and the amount of titanium added through the study of turbidity point, SEM images, water contact angle, thermogravimetric test, EDX, AFM, XPS, FTIR and other test results. The SEM images proved that the membrane obtained through the RTIPS method had a porous surface and spongy internal structure, furthermore, additional polymers were adsorbed. Use of EDX demonstrated that biomimetic mineralization prevented the production of agglomerated titanium dioxide. XPS and FTIR spectra confirmed the introduction and immobilization of HNP aggregation. Moreover, a decrease in the surface roughness and water contact angle further suggested an improvement in the hydrophilicity of the modified membrane. The introduction of HNP at a higher water bath temperature helped increase the water flux up to ten times, moreover, the oil-water separation efficiency could still reach over 99.50%. Lastly, a cycle test of the modified membrane under the optimal conditions helped confirm that the membrane forming conditions at this time could provide a better environment for the formation of the hydrophilic layer, which was conducive to the recycling of the separation membrane. In summary, more fixed more hydrophilic particles could be obtained through the RTIPS method based on biomimetic mineralization to prevent the accumulation of titanium dioxide, thus helping improve permeability and anti-fouling of the membrane.


Asunto(s)
Biónica , Membranas Artificiales , Polímeros/química , Sulfonas
8.
Genomics ; 113(2): 474-489, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359830

RESUMEN

The APETALA2/ethylene-responsive factor (AP2/ERF) has important roles in regulating developmental processes and hormone signaling transduction in plants. Pineapple demonstrates a special sensitivity to ethylene, and AP2/ERFs may contribute to this distinct sensitivity of pineapples to ethylene. However, little information is available on the AP2/ERF of pineapple. In this study, 97 AP2/ERF family members were identified from the pineapple genome. The AcAP2/ERF superfamily could be further divided into five subfamilies, and different subfamily existed functional divergence in multifarious biological processes. ERF and RAV subfamily genes might play important roles in the process of ethylene response of pineapple; ERF and DREB subfamily genes had particular functions in the floral organ development. This study is the first to provide detailed information on the features of AP2/ERFs in pineapple, provide new insights into the potential functional roles of the AP2/ERF superfamily members, and will facilitate a better understanding of the molecular mechanism of flower in pineapple.


Asunto(s)
Ananas/genética , Flores/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Ananas/crecimiento & desarrollo , Etilenos/metabolismo , Etilenos/farmacología , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430356

RESUMEN

Pineapple (Ananas comosus L.) is an important fruit crop in tropical regions, and it requires efficient sugar allocation during fruit development. Sugars Will Eventually be Exported Transporters (SWEETs) are a group of novel sugar transporters which play critical roles in seed and fruit development. However, the function of AcSWEETs remains unknown in the sugar accumulation. Herein, 17 AcSWEETs were isolated and unevenly located in 11 chromosomes. Analysis of a phylogenetic tree indicated that 17 genes were classified into four clades, and the majority of AcSWEETs in each clade shared similar conserved motifs and gene structures. Tissue-specific gene expression showed that expression profiles of AcSWEETs displayed differences in different tissues and five AcSWEETs were strongly expressed during fruit development. AcSWEET11 was highly expressed in the stage of mature fruits in 'Tainong16' and 'Comte de paris', which indicates that AcSWEET11 was important to fruit development. Subcellular localization analysis showed that AcSWEET11 was located in the cell membrane. Notably, overexpression of AcSWEET11 could improve sugar accumulation in pineapple callus and transgenic tomato, which suggests that AcSWEET11 might positively contribute to sugar accumulation in pineapple fruit development. These results may provide insights to enhance sugar accumulation in fruit, thus improving pineapple quality in the future.


Asunto(s)
Ananas , Azúcares , Ananas/genética , Filogenia , Frutas/genética , Transporte Biológico
10.
Plant Biotechnol J ; 19(4): 717-730, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33098334

RESUMEN

Guava (Psidium guajava) is an important fleshy-fruited tree of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world and has attracted considerable attention for the richness of ascorbic acid in its fruits. However, studies on the evolution and genetic breeding potential of guava are hindered by the lack of a reference genome. Here, we present a chromosome-level genomic assembly of guava using PacBio sequencing and Hi-C technology. We found that the genome assembly size was 443.8 Mb with a contig N50 of ~15.8 Mb. We annotated a total of 25 601 genes and 193.2 Mb of repetitive sequences for this genome. Comparative genomic analysis revealed that guava has undergone a recent whole-genome duplication (WGD) event shared by all species in Myrtaceae. In addition, through metabolic analysis, we determined that the L-galactose pathway plays a major role in ascorbic acid biosynthesis in guava fruits. Moreover, the softening of fruits of guava may result from both starch and cell wall degradation according to analyses of gene expression profiles and positively selected genes. Our data provide a foundational resource to support molecular breeding of guava and represent new insights into the evolution of soft, fleshy fruits in Myrtaceae.


Asunto(s)
Psidium , Ácido Ascórbico , Cromosomas , Frutas/genética , Fitomejoramiento , Psidium/genética
11.
Environ Res ; 196: 110964, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675799

RESUMEN

In this study, to mitigate the permeability-selectivity trade-off effect, Pluronic F127 (F127) and HKUST-1 were employed to construct high-performance membranes based on the reverse thermally induced phase separation (RTIPS) method. F127, as a hydrophilic modifier, was applied to increase permeability and resist polyethersulfone (PES) membrane fouling, while the collapse of HKSUT-1 caused by its instability in pure water improved the permeability and selectivity of the membrane. Characterizations demonstrated the successful synthesis of HKUST-1, together with the successful introduction of HKSUT-1 and F127 in PES membranes. It was observed that the membrane prepared by the RTIPS process possessed a uniformly porous surface and sponge-like cross-section with excellent mechanical properties, higher permeability, and selectivity compared to the dense skin and finger-like cross-section of the membrane prepared by the nonsolvent induced phase separation (NIPS) method. Moreover, the permeation and bovine serum albumin (BSA) rejection rate of the optimal membrane reached 2378 L/m2 h and 89.3%, respectively, which were far higher than those of the pure membrane. Hydrophilic F127 and many microvoids formed by the collapse of HKUST-1, played an important role in excellent antifouling properties, high permeability, and selectivity by pure water flux (PWF), flux recovery rate (FRR), BSA flux, and COD removal rate tests. Overall, the membrane with F127 and HKSUT-1 prepared via the RTIPS method not only obtained excellent antifouling properties but also mitigated the permeability-selectivity trade-off.


Asunto(s)
Membranas Artificiales , Estructuras Metalorgánicas , Permeabilidad , Polietilenos , Polímeros , Polipropilenos , Sulfonas
12.
Cancer Cell Int ; 20: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938022

RESUMEN

BACKGROUND: Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. METHODS: qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. RESULTS: In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3'-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. CONCLUSIONS: In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.

13.
Am J Otolaryngol ; 41(1): 102318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31732299

RESUMEN

PURPOSE: Abnormal DNA methylation plays an important role in clinical diagnosis and prognosis of various tumors. DNA methylation is catalyzed by DNA methyltransferase (DNMT). However, the methylation status of MAGE-A1 and MAGE-A3 promoter regions in LSCC is unclear. To investigate the methylation levels of MAGE-A1, -A3 in LSCC and corresponding normal tissues. The expression of DNMTs (DNMT1, DNMT3a and DNMT3b) in LSCC and the relationship between the methylation status of MAGE-A1, -A3 were analyzed. MATERIALS AND METHODS: We examined methylation status of MAGE-A1, -A3 in LSCC by using MSP. Meanwhile, the expression level of DNMTs in LSCC was detected by immunohistochemistry. And further analysis the correlation between DNMTs expression level and methylation status of MAGE-A1 and MAGE-A3. RESULTS: The unmethylation rate of MAGE-A1, -A3 were 39.62% and 46.23%. The expression of DNMTs was 33.02% to 37.74%. The level of demethylation of MAGE-A1 and MAGE-A3 were negative related to DNMTs protein. MAGE-A1 and MAGE-A3 unmethylation status and DNMT3a expression were independent prognostic factors for LSCC. CONCLUSIONS: The DNMTs may participate in the methylation process of MAGE-A1 and MAGE-A3, which may play an important role in the occurrence and development of LSCC.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/enzimología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neoplasias Laríngeas/enzimología , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/metabolismo , Anciano , Carcinoma de Células Escamosas/patología , Metilación de ADN , Femenino , Humanos , Neoplasias Laríngeas/patología , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Regiones Promotoras Genéticas , ADN Metiltransferasa 3B
15.
BMC Bioinformatics ; 19(1): 396, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373514

RESUMEN

BACKGROUND: Using knowledge-based interpretation to analyze omics data can not only obtain essential information regarding various biological processes, but also reflect the current physiological status of cells and tissue. The major challenge to analyze gene expression data, with a large number of genes and small samples, is to extract disease-related information from a massive amount of redundant data and noise. Gene selection, eliminating redundant and irrelevant genes, has been a key step to address this problem. RESULTS: The modified method was tested on four benchmark datasets with either two-class phenotypes or multiclass phenotypes, outperforming previous methods, with relatively higher accuracy, true positive rate, false positive rate and reduced runtime. CONCLUSIONS: This paper proposes an effective feature selection method, combining double RBF-kernels with weighted analysis, to extract feature genes from gene expression data, by exploring its nonlinear mapping ability.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neoplasias/clasificación , Neoplasias/genética , Humanos , Fenotipo
16.
J Theor Biol ; 406: 105-15, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27375218

RESUMEN

In this contribution we introduced a novel graphical method to compare protein sequences. By mapping a protein sequence into 3D space based on codons and physicochemical properties of 20 amino acids, we are able to get a unique P-vector from the 3D curve. This approach is consistent with wobble theory of amino acids. We compute the distance between sequences by their P-vectors to measure similarities/dissimilarities among protein sequences. Finally, we use our method to analyze four datasets and get better results compared with previous approaches.


Asunto(s)
Aminoácidos/química , Fenómenos Químicos , Teoría del Juego , Dinámicas no Lineales , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Animales , Codón/genética , Humanos , Filogenia , Factores de Transcripción/metabolismo , Globinas beta
17.
Pak J Med Sci ; 32(2): 427-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27182254

RESUMEN

OBJECTIVE: To evaluate the effects of ischemic postconditioning on expressions of pentraxin-related protein 3 (PTX3) and neutrophil CD11b in the plasma of patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI). METHODS: Fifty-six patients who had AMI with ST-segment elevation were randomly divided into a control group and an ischemic postconditioning group (n=28). Both groups received emergency PCI. After recanalization of infarct-related arteries, the control group did not receive intervention within three minutes, while the ischemic postconditioning group was treated by low-pressure filling and emptying of balloon within one minute. The plasma expressions of PTX3 before and 24 hour after PCI were detected by ELISA, and those of neutrophil CD11b were detected by flow cytometry. RESULTS: PTX3 and neutrophil CD11b expressions of the two groups were similar before PCI, but those of the ischemic postconditioning group significantly decreased 24 hour after PCI (P<0.05). CONCLUSION: Ischemic postconditioning lowered the expressions of PTX3 and neutrophil CD11b in AMI patients after PCI, inhibited inflammatory response, reduced the adhesion between leukocytes and endothelial cells, and protected the ischemic-reperfused myocardium.

18.
Molecules ; 19(6): 8518-32, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24959679

RESUMEN

The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/100 g fresh weight (FW), while the total phenolic (TP) content varied from 31.48 to 77.55 mg gallic acid equivalents (GAE)/100 g FW. The two parameters in the predominant cultivars Comte de Paris and Smooth Cayenne were relative low. However, MD-2 indicated the highest AsA and TP contents (33.57 mg/100 g and 77.55 mg GAE/100 g FM, respectively), and it also showed the strongest antioxidant capacity 22.85 and 17.30 µmol TE/g FW using DPPH and TEAC methods, respectively. The antioxidant capacity of pineapple was correlated with the contents of phenolics, flavonoids and AsA. The present study provided important information for the further application of those pineapple genotypes.


Asunto(s)
Ananas/química , Antioxidantes/análisis , Carbohidratos/análisis , Minerales/análisis , Ananas/clasificación , Ananas/genética , Ácido Ascórbico/análisis , Calcio/análisis , China , Ácido Cítrico/análisis , Flavonoides/análisis , Genotipo , Magnesio/análisis , Fenoles/análisis , Potasio/análisis , Sacarosa/análisis
19.
Heliyon ; 10(17): e37265, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296106

RESUMEN

The aryl hydrocarbon receptor (AHR) is a transcription factor activated by ligands that participates in many important physiological processes. Although AHR activation is associated with hepatomegaly, the underlying mechanism remains unclear. This study evaluated the effects of AHR activation on liver enlargement and regeneration in various transgenic mice and animal models. Activation of AHR by the non-toxic ligand YH439 significantly induced liver/body weight ratio in wild-type mice (1.37-fold) and AHRfl/fl.ALB-CreERT2 mice (1.54-fold). However, these effects not present in AHRΔHep mice. Additionally, the activation of AHR promotes hepatocyte enlargement (1.43-fold or 1.41-fold) around the central vein (CV) and increases number of Ki67+ cells (42.5-fold or 48.8-fold) around the portal vein (PV) in wild-type mice and AHRfl/fl.ALB-CreERT2 mice. In the 70 % partial hepatectomy (PHx) model, YH439 significantly induced hepatocyte enlargement (1.40-fold) and increased number of Ki67+ cells (3.97-fold) in AHRfl/fl.ALB-CreERT2 mice. However, these effects were not observed in AHRΔHep mice. Co-immunoprecipitation results suggested a potential protein-protein interaction between AHR and Yes-associated protein (YAP). Disruption of the association between YAP and transcription enhancer domain family member (TEAD) significantly inhibited AHR-induced liver enlargement and regeneration. Furthermore, AHR failed to induce liver enlargement and regeneration in YAPΔHep mice. Blocking the YAP signaling pathway effectively eliminated AHR-induced liver enlargement and regeneration. This study revealed the molecular mechanism of AHR regulation of liver size and regeneration through the activation of AHR-TEAD signaling pathway, thereby offering novel insights into the physiological role of AHR. These findings provide a theoretical foundation for the prevention and treatment of disorders associated with liver regeneration.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39363569

RESUMEN

Seat interface forces, particularly shear forces, play an essential role in predicting the risk of pressure ulcers and seating discomfort. When a finite element human body model (HBM) is used for static seating simulation, the most common loading method is to put the model in a position close to the desired final posture and then 'drop' it from just above the seat by applying the gravity (DROP). This does not represent how people sit in a seat. In addition, high coefficients of friction (COF) are often used to prevent sliding, which may lead to unrealistically high tangential forces. This study aims to investigate the effects of the loading process and the COF on seating simulations with a HBM. We propose a new loading approach called 'drop and rotate' (D&R) to better mimic people sitting on a seat. With the trunk more flexed than the desired posture, the model is dropped to establish the contact between the buttocks and thighs, and the seat pan first, and then between the back and the backrest by rotating the hip. Simulations were performed using a recently developed and validated adult male model in two different seat configurations. Results show that the proposed D&R method was less sensitive to COF and gave a better prediction of contact forces, especially on the seat pan. However, its computational time is higher than the DROP method. The study highlights the importance of the loading process when simulating static seating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA