RESUMEN
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.
Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Teorema de Bayes , COVID-19 , China/epidemiología , Infecciones por Coronavirus/virología , Monitoreo Epidemiológico , Humanos , Funciones de Verosimilitud , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , ViajeRESUMEN
Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.
Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Neuronas/metabolismo , Animales , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiología , Astrocitos/fisiología , Encéfalo/metabolismo , Ácidos Grasos/toxicidad , Homeostasis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-DawleyRESUMEN
The aryl hydrocarbon receptor (AhR) is a sensor of products of tryptophan metabolism and a potent modulator of immunity. Here, we examined the impact of AhR in tumor-associated macrophage (TAM) function in pancreatic ductal adenocarcinoma (PDAC). TAMs exhibited high AhR activity and Ahr-deficient macrophages developed an inflammatory phenotype. Deletion of Ahr in myeloid cells or pharmacologic inhibition of AhR reduced PDAC growth, improved efficacy of immune checkpoint blockade, and increased intra-tumoral frequencies of IFNγ+CD8+ T cells. Macrophage tryptophan metabolism was not required for this effect. Rather, macrophage AhR activity was dependent on Lactobacillus metabolization of dietary tryptophan to indoles. Removal of dietary tryptophan reduced TAM AhR activity and promoted intra-tumoral accumulation of TNFα+IFNγ+CD8+ T cells; provision of dietary indoles blocked this effect. In patients with PDAC, high AHR expression associated with rapid disease progression and mortality, as well as with an immune-suppressive TAM phenotype, suggesting conservation of this regulatory axis in human disease.
Asunto(s)
Tolerancia Inmunológica/inmunología , Receptores de Hidrocarburo de Aril/inmunología , Triptófano/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Indoles/inmunología , Indoles/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Microbiota/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/metabolismoRESUMEN
In this issue, Shachar et al. report a high-throughput imaging position mapping platform (HIPmap) enabling large-scale, high-resolution localization of 3D gene positions in single cells. Coupling loss-of-function screens with HIPmap, the authors identify DNA replication rather than mitosis as a major determinant of genome positioning.
Asunto(s)
Núcleo Celular/genética , Genes , Técnicas Genéticas , HumanosRESUMEN
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Asunto(s)
Poli ADP Ribosilación , Recombinasa Rad51 , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga/genética , Fosforilación , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismoRESUMEN
Enhancer-binding pluripotency regulators (Sox2 and Oct4) play a seminal role in embryonic stem (ES) cell-specific gene regulation. Here, we combine in vivo and in vitro single-molecule imaging, transcription factor (TF) mutagenesis, and ChIP-exo mapping to determine how TFs dynamically search for and assemble on their cognate DNA target sites. We find that enhanceosome assembly is hierarchically ordered with kinetically favored Sox2 engaging the target DNA first, followed by assisted binding of Oct4. Sox2/Oct4 follow a trial-and-error sampling mechanism involving 84-97 events of 3D diffusion (3.3-3.7 s) interspersed with brief nonspecific collisions (0.75-0.9 s) before acquiring and dwelling at specific target DNA (12.0-14.6 s). Sox2 employs a 3D diffusion-dominated search mode facilitated by 1D sliding along open DNA to efficiently locate targets. Our findings also reveal fundamental aspects of gene and developmental regulation by fine-tuning TF dynamics and influence of the epigenome on target search parameters.
Asunto(s)
ADN/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Análisis de la Célula Individual , Animales , Inmunoprecipitación de Cromatina , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Cinética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genéticaRESUMEN
Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.
Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Biología Molecular/métodos , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Humanos , Ratones , Nucleosomas/metabolismoRESUMEN
The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.
Asunto(s)
Proteínas de Drosophila , Vía de Señalización Hippo , Animales , Humanos , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurofibromina 2/metabolismo , Drosophila melanogaster/metabolismo , Mamíferos , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.
Asunto(s)
Sistemas CRISPR-Cas , Humanos , Sitios Genéticos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Núcleo Celular/genética , Genómica/métodos , ADN Satélite/genética , Línea CelularRESUMEN
Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
Asunto(s)
Neoplasias , Proteínas Nucleares , Azepinas/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Proteínas Nucleares/genética , Oncogenes/genética , Factores de Transcripción/genéticaRESUMEN
Liquid-liquid phase separation, whereby two liquids spontaneously demix, is ubiquitous in industrial, environmental, and biological processes. While isotropic fluids are known to condense into spherical droplets in the binodal region, these dynamics are poorly understood for structured fluids. Here, we report the unique observation of condensate networks, which spontaneously assemble during the demixing of a mesogen from a solvent. Condensing mesogens form rapidly elongating filaments, rather than spheres, to relieve distortion of an internal smectic mesophase. As filaments densify, they collapse into bulged discs, lowering the elastic free energy. Additional distortion is relieved by retraction of filaments into the discs, which are straightened under tension to form a ramified network. Understanding and controlling these dynamics may provide different avenues to direct pattern formation or template materials.
RESUMEN
Flowering is critical for sexual reproduction and fruit production. Several pear (Pyrus sp.) varieties produce few flower buds, but the underlying mechanisms are unknown. The circadian clock regulator EARLY FLOWERING3 (ELF3) serves as a scaffold protein in the evening complex that controls flowering. Here, we report that the absence of a 58-bp sequence in the 2nd intron of PbELF3 is genetically associated with the production of fewer flower buds in pear. From rapid amplification of cDNA ends sequencing results, we identified a short, previously unknown transcript from the PbELF3 locus, which we termed PbELF3ß, whose transcript level was significantly lower in pear cultivars that lacked the 58-bp region. The heterologous expression of PbELF3ß in Arabidopsis (Arabidopsis thaliana) accelerated flowering, whereas the heterologous expression of the full-length transcript PbELF3α caused late flowering. Notably, ELF3ß was functionally conserved in other plants. Deletion of the 2nd intron reduced AtELF3ß expression and caused delayed flowering time in Arabidopsis. AtELF3ß physically interacted with AtELF3α, disrupting the formation of the evening complex and consequently releasing its repression of flower induction genes such as GIGANTEA (GI). AtELF3ß had no effect in the absence of AtELF3α, supporting the idea that AtELF3ß promotes flower induction by blocking AtELF3α function. Our findings show that alternative promoter usage at the ELF3 locus allows plants to fine-tune flower induction.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/fisiología , Plantas/metabolismo , Flores/metabolismoRESUMEN
Deciphering the molecular basis of pluripotency is fundamental to our understanding of development and embryonic stem cell function. Here, we report that TAF3, a TBP-associated core promoter factor, is highly enriched in ES cells. In this context, TAF3 is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. In addition to its role in the core promoter recognition complex TFIID, genome-wide binding studies reveal that TAF3 localizes to a subset of chromosomal regions bound by CTCF/cohesin that are selectively associated with genes upregulated by TAF3. Notably, CTCF directly recruits TAF3 to promoter distal sites and TAF3-dependent DNA looping is observed between the promoter distal sites and core promoters occupied by TAF3/CTCF/cohesin. Together, our findings support a new role of TAF3 in mediating long-range chromatin regulatory interactions that safeguard the finely-balanced transcriptional programs underlying pluripotency.
Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/citología , Endodermo/citología , Humanos , Ratones , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores Asociados con la Proteína de Unión a TATA , Teratoma/metabolismo , Teratoma/patología , Transcripción Genética , CohesinasRESUMEN
DNA motifs are crucial patterns in gene regulation. DNA-binding proteins (DBPs), including transcription factors, can bind to specific DNA motifs to regulate gene expression and other cellular activities. Past studies suggest that DNA shape features could be subtly involved in DNA-DBP interactions. Therefore, the shape motif annotations based on intrinsic DNA topology can deepen the understanding of DNA-DBP binding. Nevertheless, high-throughput tools for DNA shape motif discovery that incorporate multiple features altogether remain insufficient. To address it, we propose a series of methods to discover non-redundant DNA shape motifs with the generalization to multiple motifs in multiple shape features. Specifically, an existing Gibbs sampling method is generalized to multiple DNA motif discovery with multiple shape features. Meanwhile, an expectation-maximization (EM) method and a hybrid method coupling EM with Gibbs sampling are proposed and developed with promising performance, convergence capability, and efficiency. The discovered DNA shape motif instances reveal insights into low-signal ChIP-seq peak summits, complementing the existing sequence motif discovery works. Additionally, our modelling captures the potential interplays across multiple DNA shape features. We provide a valuable platform of tools for DNA shape motif discovery. An R package is built for open accessibility and long-lasting impact: https://zenodo.org/doi/10.5281/zenodo.10558980.
Asunto(s)
ADN , Motivos de Nucleótidos , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Algoritmos , Conformación de Ácido Nucleico , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Sitios de Unión , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Humanos , Unión ProteicaRESUMEN
Intensity-based time-lapse fluorescence resonance energy transfer (FRET) microscopy has been a major tool for investigating cellular processes, converting otherwise unobservable molecular interactions into fluorescence time series. However, inferring the molecular interaction dynamics from the observables remains a challenging inverse problem, particularly when measurement noise and photobleaching are nonnegligible-a common situation in single-cell analysis. The conventional approach is to process the time-series data algebraically, but such methods inevitably accumulate the measurement noise and reduce the signal-to-noise ratio (SNR), limiting the scope of FRET microscopy. Here, we introduce an alternative probabilistic approach, B-FRET, generally applicable to standard 3-cube FRET-imaging data. Based on Bayesian filtering theory, B-FRET implements a statistically optimal way to infer molecular interactions and thus drastically improves the SNR. We validate B-FRET using simulated data and then apply it to real data, including the notoriously noisy in vivo FRET time series from individual bacterial cells to reveal signaling dynamics otherwise hidden in the noise.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Microscopía , Transferencia Resonante de Energía de Fluorescencia/métodos , Teorema de BayesRESUMEN
Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1-Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1-Ccz1-RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1-Ccz1-RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1-Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.
Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al GTP rab , Animales , Microscopía por Crioelectrón , Proteínas de Unión al GTP rab/metabolismo , Pez Cebra/metabolismo , Drosophila , Proteínas de Drosophila/ultraestructuraRESUMEN
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Asunto(s)
Neoplasias , Orgánulos , HumanosRESUMEN
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
RESUMEN
The rapid growth of omics-based data has revolutionized biomedical research and precision medicine, allowing machine learning models to be developed for cutting-edge performance. However, despite the wealth of high-throughput data available, the performance of these models is hindered by the lack of sufficient training data, particularly in clinical research (in vivo experiments). As a result, translating this knowledge into clinical practice, such as predicting drug responses, remains a challenging task. Transfer learning is a promising tool that bridges the gap between data domains by transferring knowledge from the source to the target domain. Researchers have proposed transfer learning to predict clinical outcomes by leveraging pre-clinical data (mouse, zebrafish), highlighting its vast potential. In this work, we present a comprehensive literature review of deep transfer learning methods for health informatics and clinical decision-making, focusing on high-throughput molecular data. Previous reviews mostly covered image-based transfer learning works, while we present a more detailed analysis of transfer learning papers. Furthermore, we evaluated original studies based on different evaluation settings across cross-validations, data splits and model architectures. The result shows that those transfer learning methods have great potential; high-throughput sequencing data and state-of-the-art deep learning models lead to significant insights and conclusions. Additionally, we explored various datasets in transfer learning papers with statistics and visualization.
Asunto(s)
Benchmarking , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Aprendizaje Automático , Medicina de Precisión , Toma de Decisiones ClínicasRESUMEN
A previous genome-wide association study (GWAS) revealed an association of the noncoding SNP rs1663689 with susceptibility to lung cancer in the Chinese population. However, the underlying mechanism is unknown. In this study, using allele-specific 4C-seq in heterozygous lung cancer cells combined with epigenetic information from CRISPR/Cas9-edited cell lines, we show that the rs1663689 C/C variant represses the expression of ADGRG6, a gene located on a separate chromosome, through an interchromosomal interaction of the rs1663689 bearing region with the ADGRG6 promoter. This reduces downstream cAMP-PKA signaling and subsequently tumor growth both in vitro and in xenograft models. Using patient-derived organoids, we show that rs1663689 T/T-but not C/C-bearing lung tumors are sensitive to the PKA inhibitor H89, potentially informing therapeutic strategies. Our study identifies a genetic variant-mediated interchromosomal interaction underlying ADGRG6 regulation and suggests that targeting the cAMP-PKA signaling pathway may be beneficial in lung cancer patients bearing the homozygous risk genotype at rs1663689.